(四)activit5.23.0修复跟踪高亮显示BUG
一、先看bug
在 (三)springboot2.7.6集成activit5.23.0之流程跟踪高亮显示 末尾就发现高亮显示与预期不一样,比如上面的任务2前面的箭头没有高亮显示。
二、分析原因
具体分析步骤省略了,主要是ProcessInstanceHighlightsResource类中有段代码有bug。
可以看到源码本身有注释,说按开始时间排序不正确,用默认排序是正确的。
select * from `act_hi_actinst`
我们可以去数据库中查询活动列表,希望按活动发生的先后顺序排序。可以发现,大部分时候,按活动的开始时间排序是正确的,但是在活动系统自动完成或者说几个活动在毫秒级时间内同时完成,这个时候无法通过开始时间判断活动发生的先后顺序。所以官方源码中注释了按开始时间排序。
后面还有一个按活动id排序,这个也是不对的,活动id在流程部署时就确定了,与流程实例中的活动顺序无关。
那注释上为什么说按默认排序是正确的呢?
我的理解是当默认排序是以活动记录的插入顺序排序时,就是正确的。
但实际情况默认排序并不一定总是活动记录的插入顺序排序的。不一定总是正确。
MySQL的默认排序规则:
1.如果查询条件无索引列,默认按主键正序排序。
2.查询条件中有索引列,默认顺序为:主键 > 唯一索引 > 普通索引,如果在SQL中查询条件同时存在有多个,那么按照索引最先创建的顺序进行正序排序。
例:SELECT * FROM a WHERE a.id = ‘a’ and a.user_id = ‘a’;
如果id和user_id都是索引,id先创建,则按照id进行正序排序。
从上面截图,我们就可以看到,默认排序并没有按插入顺序排序。主要原因是ID_是字符串类型,而不是整数类型,所以升序就是上图的结果。
综上,高亮显示BUG的原因是查询活动列表时没有按活动的先后顺序排序。
三、修复方案
找出原因后,就可以针对性的进行修复。具体上面的问题,可以有2种方案。
(方案一)利用mysql的默认排序规则。
这种方案,这则是利用activiti的ID生成器实现,默认的ID生成器实现就不具体分析了,看上面的截图大概也差不多可以推测出来。只要将ID生成器替换为严格按递增顺序生成的就可以了。
下面介绍几种的ID生成方法:
- UUID:生成的UUID是由 8-4-4-4-12格式的数据组成,其中32个字符和4个连字符' - ',一般我们使用的时候会将连字符删除 uuid.toString().replaceAll("-","")。该算法不是递增的,不能满足要求。
- StrongUuidGenerator:activiti自带的ID生成器。但是生成的ID不是递增的。
- 数据库生成:ID_字段类型是字符串,所以无法使用自增字段。如果要改为整数自增字段,引擎改动太复杂,后过不可控,排除。
- 雪花算法-Snowflake:该方法比较适配。但他也有相应的缺点:依赖系统时钟,64位字符串占空间,不适用短时间生成大量的ID。
- 百度-UidGenerator:不是很熟悉,没用过。
- 美团Leaf:不是很熟悉,没用过。
所以该方案,只要把ID生成器换成雪花算法就可以了。但要注意避免雪花算法生成重复ID。
1.雪花算法实现SnowflakeIdWorker.java
package xpl.util.id;/*** Twitter_Snowflake<br>* SnowFlake的结构如下(每部分用-分开):<br>* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>* 加起来刚好64位,为一个Long型。<br>* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。*/
public class SnowflakeIdWorker {private final static SnowflakeIdWorker sfiw = new SnowflakeIdWorker(0,0);// ==============================Fields===========================================/** 开始时间截 (2015-01-01) */private final long twepoch = 1420041600000L;/** 机器id所占的位数 */private final long workerIdBits = 5L;/** 数据标识id所占的位数 */private final long datacenterIdBits = 5L;/** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */private final long maxWorkerId = -1L ^ (-1L << workerIdBits);/** 支持的最大数据标识id,结果是31 */private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);/** 序列在id中占的位数 */private final long sequenceBits = 12L;/** 机器ID向左移12位 */private final long workerIdShift = sequenceBits;/** 数据标识id向左移17位(12+5) */private final long datacenterIdShift = sequenceBits + workerIdBits;/** 时间截向左移22位(5+5+12) */private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;/** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */private final long sequenceMask = -1L ^ (-1L << sequenceBits);/** 工作机器ID(0~31) */private long workerId;/** 数据中心ID(0~31) */private long datacenterId;/** 毫秒内序列(0~4095) */private long sequence = 0L;/** 上次生成ID的时间截 */private long lastTimestamp = -1L;//==============================Constructors=====================================/*** 构造函数* @param workerId 工作ID (0~31)* @param datacenterId 数据中心ID (0~31)*/public SnowflakeIdWorker(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}// ==============================Methods==========================================/*** 获得下一个ID (该方法是线程安全的)* @return SnowflakeId*/public synchronized long getNextId() {long timestamp = timeGen();//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}//如果是同一时间生成的,则进行毫秒内序列if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;//毫秒内序列溢出if (sequence == 0) {//阻塞到下一个毫秒,获得新的时间戳timestamp = tilNextMillis(lastTimestamp);}}//时间戳改变,毫秒内序列重置else {sequence = 0L;}//上次生成ID的时间截lastTimestamp = timestamp;//移位并通过或运算拼到一起组成64位的IDreturn ((timestamp - twepoch) << timestampLeftShift) //| (datacenterId << datacenterIdShift) //| (workerId << workerIdShift) //| sequence;}/*** 获得下一个ID (该方法是线程安全的)* @return SnowflakeId*/public static long nextId() {return sfiw.getNextId();}/*** 阻塞到下一个毫秒,直到获得新的时间戳* @param lastTimestamp 上次生成ID的时间截* @return 当前时间戳*/protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}/*** 返回以毫秒为单位的当前时间* @return 当前时间(毫秒)*/protected long timeGen() {return System.currentTimeMillis();}//==============================Test=============================================/** 测试 */public static void main(String[] args) {SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);for (int i = 0; i < 1000; i++) {long id = idWorker.getNextId();System.out.println(Long.toBinaryString(id));System.out.println(id);}}
}
2.自定义ID生成器
SnowflakeIdWorkerGenerator.java
package org.activiti.engine.impl.ext;import org.activiti.engine.impl.cfg.IdGenerator;import xpl.util.id.SnowflakeIdWorker;public class SnowflakeIdWorkerGenerator implements IdGenerator {@Overridepublic String getNextId() {return ""+SnowflakeIdWorker.nextId();}}
3.替换activiti默认的ID生成器
这个替换研究了好一会,才找到替换的方法。
所以需要扩展引擎配置,只需要实现ProcessEngineConfigurationConfigurer接口就可以了。
于是,我们创建MyProcessEngineConfigurationConfigurer类。代码如下:
package xpl.study.activiti;import org.activiti.engine.impl.ext.SnowflakeIdWorkerGenerator;
import org.activiti.spring.SpringProcessEngineConfiguration;
import org.activiti.spring.boot.ProcessEngineConfigurationConfigurer;
import org.springframework.context.annotation.Configuration;@Configuration
public class MyProcessEngineConfigurationConfigurer implements ProcessEngineConfigurationConfigurer{@Overridepublic void configure(SpringProcessEngineConfiguration processEngineConfiguration) {processEngineConfiguration.setIdGenerator(new SnowflakeIdWorkerGenerator());}}
4.运行测试
(方案二)使用order by与实现按活动发生顺序进行排序。
1.对act_hi_actinst表新增一个排序字段,并且自增。
2.修改源码HistoricActivityInstanceQuery,新增一个接口orderBySeq。
package org.activiti.engine.history;
import org.activiti.engine.query.Query;/*** Programmatic querying for {@link HistoricActivityInstance}s.* * @author Tom Baeyens* @author Joram Barrez*/
public interface HistoricActivityInstanceQuery extends Query<HistoricActivityInstanceQuery, HistoricActivityInstance>{//...........HistoricActivityInstanceQuery orderBySeq();}
3.修改源码HistoricActivityInstanceQueryImpl,新增orderBySeq实现
public HistoricActivityInstanceQuery orderBySeq() {orderBy(HistoricActivityInstanceQueryProperty.SEQ);return this;}
4.修改源码HistoricActivityInstanceQueryProperty ,新增一个静态变量。
public static final HistoricActivityInstanceQueryProperty SEQ = new HistoricActivityInstanceQueryProperty("SEQ_");
5.修改源码ProcessInstanceHighlightsResource ,查询时拼接seq字段参与排序。
6.运行测试
方案二其实还可以更简单的实现。第一步与上面一样,但是可以省略上面2,3,4步,直接到第5步,利用createNativeHistoricActivityInstanceQuery查询列表,就可以直接跳过2,3,4步实现了。
四、总结
经过测试二种方案都是可行。个人比较倾向于第二种。第二种比较有安全感,第一种如果服务器时间回拨,可能导致ID重复,系统故障。虽然发生几率不是很大,但如果对系统稳定性要求较高的话还是存在一些风险。
相关文章:

(四)activit5.23.0修复跟踪高亮显示BUG
一、先看bug 在 (三)springboot2.7.6集成activit5.23.0之流程跟踪高亮显示 末尾就发现高亮显示与预期不一样,比如上面的任务2前面的箭头没有高亮显示。 二、分析原因 具体分析步骤省略了,主要是ProcessInstanceHighlightsResour…...
AsyncTask
AsyncTask简介 AsyncTask 是 Android 提供的一个轻量级的异步任务类,它允许在后台线程中执行耗时操作(如网络请求、数据库操作等),并在操作完成后更新 UI。其设计初衷是为了简化后台任务的处理,特别是在不需要复杂并发…...
嵌入式面试知识点总结 -- FreeRTOS篇
一、堆栈溢出检测 问题: 问题一:FreeRTOS堆栈溢出检测的方法? 解答: 参看:FreeRTOS学习 – FreeRTOSConfig.h介绍 两种堆栈溢出检测方法: 方法1: 开启方法,configCHECK_FOR_STACK_OVERFLOW…...

【深度学习】注意力机制(Transformer)
注意力机制 1.基础概念 1.1 查询、键和值 在人类的注意力方式中,有自主性的与非自主性的注意力提示两种解释方式。所谓自主性注意力提示,就是人本身主动想要关注到的某样东西;非自主性提示则是基于环境中物体的突出性和易见性,…...
【MySQL】将一张表的某一个值赋值到另一张表中
场景 两张表可以通过某个字段关联起来,并且想要将其中一张表的某个值赋值到另一张表的某个字段中 实操 在MySQL中,要将一张表(我们称之为Table_A)的某个字段的值赋给另一张表(Table_B)的对应字段&#x…...

怎样确定局域网里面是否有MAC地址冲突
目录 MAC地址冲突的现象1. 网络连接不稳定2. 数据包丢失3. 网络性能下降4. 无法访问特定设备5. 网络诊断工具的异常结果6. 网络安全问题 确定MAC地址冲突的方法如何解决MAC地址冲突总结 MAC地址冲突 是指在同一局域网(LAN)中,两个或多个设备具…...

springboot 大学生兼职平台系统-计算机毕业设计源码05282
摘 要 在当代大学生活中,兼职工作已经成为了许多学生的重要组成部分。校园兼职现象的普遍性及其对大学生生活的影响不容忽视。然而,现有的校园兼职系统往往存在信息不对称、管理不规范等问题。因此,我们需要深入理解校园兼职现象,…...
CentOS linux安装nginx
下载nginx-1.21.3.tar.gz 及 nginx-upstream-fair-master.zip 上传nginx-upstream-fair-master至/app/server/nginx/modules/解压 cd /app/server/nginx/modules unzip nginx-upstream-fair-master.zip上传nginx压缩包至**/app/server/nginx/ **(根据自己需求而定…...

事务性邮件接口API如何集成以实现自动化?
事务性邮件接口API有哪些优势?邮件接口API集成方法? 通过集成事务性邮件接口API,企业可以实现邮件发送的自动化,提高效率,增强用户体验。AokSend将探讨如何集成事务性邮件接口API以实现自动化,并提供一些最…...

zabbix 监控软件
zabbix 监控软件 自带图形化界面,通过网页就可以监控所有服务器的状态 事件告警,邮箱通知(噩梦) 短信,电话。 zabbix是什么? web界面提供的分布式监控以及网络监控功能的开源的企业级软件解决方案 监…...

C语言随机数小游戏
目录 前言 一、游戏要求: 二、游戏实现 1.游戏界面 2.游戏主体 3.主函数 4.运行结果: 总结 前言 前面我们学到了C语言随机数的相关知识,我们今天用这个知识做一个有趣的小游戏,会有一点函数的知识,不过后面会…...

解决Ubuntu报“无法解析域名cn.archive.ubuntu.com“问题
今天在Ubuntu系统上,使用sudo apt update命令,进行更新时,弹出"无法解析域名 cn.archive.ubuntu.com"问题,如图(1)所示: 图(1) 弹出"无法解析域名 cn.archive.ubuntu.com" 错误 出现这种现象的原因…...

搭建pxe网络安装环境实现服务器自动部署
目录 配置 kickstart自动安装脚本 搭建dhcp服务 搭建pxe网络安装环境实现服务器自动部署 测试 配置 kickstart自动安装脚本 yum install system-config-kickstart #在rhel7做,rhel9要收费 system-config-kickstart #启动图形制作工具 vim …...

Go框架选战:Gin、Echo、Fiber的终极较量
Gin 优点: 高性能: 优化以处理高并发和低延迟请求。易于上手: 对于熟悉 Go 的开发者来说,API 设计直观,学习曲线低。社区支持强: 广泛使用,有大量第三方中间件和教程。 缺点: 相比于其他框架如 Echo,Gin缺乏内置的验证支持Gin…...

2024.8.08(python)
一、搭建python环境 1、检查是否安装python [rootpython ~]# yum list installed | grep python [rootpython ~]# yum list | grep python3 2、安装python3 [rootpython ~]# yum -y install python3 安装3.12可以使用源码安装 3、查看版本信息 [rootpython ~]# python3 --vers…...

RabbitMQ知识总结(基本原理+高级特性)
文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 基本原理 消息的可靠性投递 RabbitMQ 消息的投递路径为ÿ…...

字符串切割split
let obj {} let str "aa占比:17.48%,aa计费占比:0.00%" let arr str.split(,) // [aa占比:17.48%,aa计费占比:0.00%] arr.forEach(item > { let [key,value] item.split(:) obj[key] value }) console.log(obj) //{aa占比: 17.48%, aa计费占比: 0.00%} con…...

Python中的 `continue` 语句:掌握循环控制的艺术
Python中的 continue 语句:掌握循环控制的艺术 下滑即可查看博客内容 🌈 欢迎莅临我的个人主页 👈这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!🎇 🎓 博主简介:985高校的普通…...

AI安全新纪元:智能体驱动的网络安全新范式
近日,ISC.AI 2024第十二届互联网安全大会在北京盛大开幕。本次大会以"打造安全大模型,引领安全行业革命"为主题,旨在呼吁行业以大模型重塑安全体系,以保障数字经济的稳健发展。 在企业安全运营与策略实践论坛上&#x…...

c语言学习,isascii()函数分析
1:isascii() 函数说明: 检查参数c,是不是ASCI码字符 2:函数原型: int isascii(int c) 3:函数参数: 参数c,为检测ASCI码 4:返回值: 参数c为ASCII码字符&…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...

【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...