当前位置: 首页 > news >正文

基于Pytorch的可视化工具

深度学习网络通常具有很深的层次结构,而且层与层之间通常会有并联、串联等连接方式。当使用PyTorch建立一个深度学习网络并输出文本向读者展示网络的连接方式是非常低效的,所以需要有效的工具将建立的深度学习网络结构有层次化的展示,这就需要使用相关的深度学习网络结构可视化库。

3.1 准备网络

import torch
import torch.nn as nn
import torchvision
import torchvision.utils as vutils
from torch.optim import SGD
import torch.utils.data as Data
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt"""
下面导入手写字体数据,并将数据处理为数据加载器
"""
train_data=torchvision.datasets.MNIST(root="./Dataset",train=True,#将数据转化为torch使用的张量,取值范围为[0-1]transform=torchvision.transforms.ToTensor(),download=False#因为数据已经下载过所以这里不在下载)
#定义一个数据加载器
train_loader=Data.DataLoader(dataset=train_data,#使用的数据集batch_size=128,#批处理样本大小shuffle=True,num_workers=0
)
#准备需要的测试集
test_data=torchvision.datasets.MNIST(root="./Dataset",train=False,download=False
)
#为数据添加一个通道维度,并且取值范围缩放到[0-1]之间
test_data_x=test_data.data.type(torch.FloatTensor)/255.0
test_data_x=torch.unsqueeze(test_data_x,dim=1)
test_data_y=test_data.targets#测试集的标签
print(test_data_x.shape)
print(test_data_y.shape)
"""
(1)针对训练集使用torchvision.datasets.MNIST()函数导入数据,
并将其像素值转化到0~1之间,然后使用Data.DataLoader()函数定义一个数据加载器,
每个batch包含128张图像。
(2)针对测试数据,同样使用torchvision.datasets.MNIST()函数导入数据,
但不将数据处理为数据加载器,而是将整个测试集作为一个batch,方便计算模型在测试集上的预测精度。
"""
#搭建一个卷积神经网络
class ConvNet(nn.Module):def __init__(self):super(ConvNet,self).__init__()#定义第一个卷积层self.conv1=nn.Sequential(nn.Conv2d(in_channels=1,#输入的feature_mapout_channels=16,#输出的feature_mapkernel_size=3,#卷积核尺寸stride=1,#卷积核步长padding=1,#进行填充),nn.ReLU(),#激活函数nn.AvgPool2d(kernel_size=2,#平均值池化层,使用2*2stride=2,#池化步长为2),)#定义第二个卷积层self.conv2=nn.Sequential(nn.Conv2d(16,32,3,1,1),nn.ReLU(),#激活函数nn.MaxPool2d(2,2)#最大值池化)#定义全连接层self.fc=nn.Sequential(nn.Linear(in_features=32*7*7,#输入特征out_features=128#输出特征),nn.ReLU(),#激活层nn.Linear(128,64),#nn.ReLU()#激活层)self.out=nn.Linear(64,10)#最后的分类层def forward(self,x):x=self.conv1(x),x=self.conv2(x),x=x.view(x.size(0),-1),#展平多维的卷积图层x=self.fc(x),output=self.out(x),return output
myConvNet=ConvNet()

3.2 网络结构的可视化---PytorchViz

从定义网络和网络的输出可以看出,在myConvNet网络结构中,共包含两个使用nn.Sequential()函数连接的卷积层,即conv1和conv2,每个层都包含有卷积层、激活函数层和池化层。在fc层中,包含两个全连接层和激活函数层,out层则由一个全连接层构成。通过文本输出myConvNet网络的网络结构得到上面的输出结果,但这并不容易让读者理解在网络中层与层之间的连接方式,所以需要将PyTorch搭建的深度学习网络进行可视化,通过图像来帮助读者理解网络层与层之间的连接方式。PyTorchViz库是一个可视化网络结构的库,学习和了解这些库对网络结构进行可视化,可以帮助我们查看、理解所搭建深度网络的结构。

from torchviz import make_dot
x=torch.randn(1,1,28,28).requires_grad_(True)
y=myConvNet(x)
#make_dot用来得到网络的可视化图像
myConvNets=make_dot(y,params=dict(list(myConvNet.named_parameters())+[("x",x)]))
myConvNets.format='png'#指定可视化图像的格式
myConvNets.directory="model_graph/"#指定图像保存的文件夹
myConvNets.view()

得到的图像如下图所示:

 3.3 训练过程可视化---TensorboardX

网络结构可视化,主要是帮助使用者理解所搭建的网络或检查搭建网络时存在的错误。而网络训练过程的可视化,通常用于监督网络的训练过程或呈现网络的训练效果。tensorboardX是帮助pytorch使用tensornoard工具来可视化的库,在tensorboardX库中,提供了多种向tensorboard中添加事件的函数。

函数功能用法
SummaryWriter()创建编写器,保存日志writer=SummaryWriter()
writer.add_scalar()添加标量writer.add_scalar(''myscalar",value,iteration)
writer.add_image()添加图像writer.add_image("imresult",x,iteration)
writer.add_histogram()添加直方图writer.add_histogram('hist',array,iteration)
writer.add_graph()添加网络结构writer.add_graph(model,input_to_model=None)
writer.add_audio()添加音频add_audio(tag,audio,iteration,sample_rate)
writer.add_text()添加文本writer.add_text(tag,text_string,global_step=None)

下面针对建立好的MNIST手写字体识别网络,使用rensorboardX库对网络在训练过程中的损失函数的变化情况、精度变化情况、权重分布等内容进行可视化,程序如下:

from tensorboardX import SummaryWriter
SumWriter=SummaryWriter(log_dir='./log')#日志保存路径
#定义优化器
optimizer=torch.optim.Adam(myConvNet.parameters(),lr=0.003)
#定义损失函数
loss_func=nn.CrossEntropyLoss()
train_loss=0
print_step=100#每经过100次迭代,输出损失
#对模型进行迭代训练,对所有的数据训练epoch轮
for epoch in range(5):#对训练数据的加载器进行迭代计算for step,(b_x,b_y) in enumerate(train_loader):#计算每个batch上的损失output=myConvNet(b_x)loss=loss_func(output,b_y)#交叉熵损失函数optimizer.zero_grad()#每个迭代步的梯度初始化为0loss.backward()#损失后向传播optimizer.step()#使用梯度进行优化train_loss=train_loss+loss#计算累加损失niter=epoch*len(train_loader)+step+1#计算迭代次数#计算每经过print_step次迭代后的输出if niter % print_step==0:#为日志添加训练集损失函数SumWriter.add_scalar("train loss",train_loss.item() / niter,global_step=niter)#计算在测试集上的精度output=myConvNet(test_data_x)_,pre_lab=torch.max(output,1)acc=accuracy_score(test_data_y,pre_lab)#为日志添加测试集上的预测精度SumWriter.add_scalar("test acc",acc.item(),niter)#为日志中添加训练数据的可视化图像,使用当前batch的图像#将一个batch的数据进行预处理b_x_im=vutils.make_grid(b_x,nrow=12)SumWriter.add_image('train image sample',b_x_im,niter)#使用直方图可视化网络中参数的分布情况for name,param in myConvNet.named_parameters():SumWriter.add_histogram(name,param.data.numpy(),niter)

在网络训练完毕之后,会得到网络的训练过程文件,该文件的可视化结果可以通过tensorboard可视化工具进行查看。

日志文件保存路径

 在conda环境下执行>tensorboard --logdir="文件路径"

 成功后,tensorboard会返回一个本地网址链接,浏览器打开该链接即可查看到可视化界面

3.5 Visdom可视化

Visdom库中包含多种用于可视化图像的接口

可视化函数功能描述
vis.image可视化一张图像
vis.image可视化一个batch的图像,或者一个图像列表
vis.text可视化文本
vis.audio用于播放音频
vis.matplot可视化Matplotlib的图像
vis.scatter2D或者3D的散点图
vis.line线图
vis.stem茎叶图
vis.heatmap热力图
vis.bar条形图
vis.histogram直方图
vis.boxplot盒形图
vis.surf曲面图
vis.contour等高线图
vis.quiver箭头图
vis.video播放音频
vis.mesh网格图

下面使用具体的数据集进行可视化图像:

import numpy as np
import torch
from visdom import Visdom
from sklearn.datasets import load_iris
iris_x,iris_y=load_iris(return_X_y=True)
print(iris_x.shape)
print(iris_y.shape)
"""
上面的程序导入了鸢尾花数据集,包含3类数据,150个样本,每个样本包含4个特征。
"""
vis=Visdom()
#2D散点图
vis.scatter(iris_x[:,0:2],Y=iris_y+1,win="windows1",env="main")
#3D散点图
vis.scatter(iris_x[:,0:3],Y=iris_y+1,win="3D 散点图",env="main",opts=dict(markersize=4,xlabel="特征一",ylabel="特征二"))
"""
程序中使用vis = Visdom()初始化一个绘图对象,通过vis.scatter()为对象添加散点图。
在该函数中,如果输入的X为二维则可得到2D散点图,如果输入的X为三维则可得到3D散点图,
其中参数Y用于指定数据的分组情况,参数win指定图像的窗口名称,参数env则指定图像所在的环境。
可以发现两幅图像都在主环境main中。图像的其他设置可使用opts参数通过字典的形式设置。
在上述初始化的可视化图像环境main中,继续添加其他窗口,以绘制不同类型的图像,如添加折线图.
"""
#添加折线图
x=torch.linspace(-6,6,100).view((-1,1))
sigmoid=torch.nn.Sigmoid()
sigmoidy=sigmoid(x)
tanh=torch.nn.Tanh()
tanhy=tanh(x)
relu=torch.nn.ReLU()
reluy=relu(x)
#连接3个张量
ploty=torch.cat((sigmoidy,tanhy,reluy),dim=1)
plotx=torch.cat((x,x,x),dim=1)
vis.line(Y=ploty,X=plotx,win="line plot",env="main",opts=dict(dash=np.array(["solid","dash","dashdot"]),legend=["Sigmoid","Tanh","ReLU"]))
"""
上面的程序中,可视化出了sigmoid、Tanh和ReLU三种激活函数的图像。
在可视化折线时,使用vis.line()函数进行绘图,图像在环境main中,
通过win参数指定窗口名称为line plot,然后通过opts参数为不同的线设置了不同的线型。
"""
#添加茎叶图
x=torch.linspace(-6,6,100).view((-1,1))
y1=torch.sin(x)
y2=torch.cos(x)
#连接2个变量
plotx=torch.cat((y1,y2),dim=1)
ploty=torch.cat((x,x),dim=1)
vis.stem(X=plotx,Y=ploty,win="stem plot",env="main",#设置图例opts=dict(legend=["sin","cos"],title="茎叶图") )
"""
上面的程序中,可视化出了正弦和余弦函数的茎叶图。
在可视化时通过vis.stem()函数绘图,图像在环境main中,
通过win参数指定窗口名称为stem plot,然后通过opts参数为图像添加图例和标题。
"""
#添加热力图
iris_corr=torch.from_numpy(np.corrcoef(iris_x,rowvar=False))
vis.heatmap(iris_corr,win="heatmap",env="main",#设置每个特征的名称opts=dict(rownames=["x1","x2","x3","x4"],columnnames=["x1","x2","x3","x4"],title="热力图"))
"""
程序中可视化出了鸢尾花数据集中4个特征的相关系数热力图。
在可视化时通过vis.heatmap()函数进行绘图,图像在环境main中,
通过win参数指定窗口名称为heatmap,然后通过opts参数为图像添加X轴的变量名称、Y轴变量名称和标题。
"""

注意:在使用visdom可视化图像之前,应该在命令行激活visdom服务,否则程序报错

python -m visdom.server

命令执行成功后会返回一个本地链接: http://localhost:8097

然后在pycharm中执行代码,再用浏览器打开上述链接即可得到下面的可视化图像: 

相关文章:

基于Pytorch的可视化工具

深度学习网络通常具有很深的层次结构,而且层与层之间通常会有并联、串联等连接方式。当使用PyTorch建立一个深度学习网络并输出文本向读者展示网络的连接方式是非常低效的,所以需要有效的工具将建立的深度学习网络结构有层次化的展示,这就需要…...

XCPC第十一站,带你学会图论基本算法

我们约定:以下n表示点的数目,m表示边的数目。 引子1——邻接表存储图的方法()(暂时不考虑重边和自环) 现在我们有n个点(编号为1~n)和m条边,要用数组存储它们&#xff0c…...

【MySQL】1 MySQL的下载、安装与配置|提供安装包

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享,与更多的人进行学习交流 目前,已开了以下专栏,欢迎关注与指导 1️⃣Java基础知识系统学习(持续更文中…) 2️⃣UML(已更完) 3️⃣MySQL(持续更文中…) MYSQL的下载、安装与配置1.下载MySQL5.71.1安装包的获…...

Redis 事务

目录Redis 事务一、Redis事务的概念:二、redis事务提出的逻辑:三、redis事务的基本操作四、事务的执行流程五、redis锁六、redis分布式锁Redis 事务 一、Redis事务的概念: Redis 事务的本质是一组命令的集合。事务支持一次执行多个命令&…...

【linux】:进程控制

文章目录 前言一、什么是写时拷贝二、进程控制 1.进程终止2.进程等待三丶进程程序替换总结前言 了解上一篇文章中的进程地址空间后,我们再来说说进程控制的概念,进程控制我们需要搞清楚三个问题:如何进程终止,如何解决僵尸进程问…...

在recyclerview中使用其item布局的ViewBinding类需要注意的问题

问题描述 最近在使用RecycerView的瀑布流布局,我想直接用ViewBinding取得item中的一个TextView然后根据position进行赋值。 比如我点击测试标题2,它在日志中应该能打印出测试标题2才对。 但是他却打印出“测试标题0” 按理来说标题应该更点击的位置对…...

基于EB工具的TC3xx_MCAL配置开发05_ADC模块硬件Pwm触发Demo配置

目录 1.概述2. Pwm相关配置2.1 PWM->General配置2.2 PWM->PwmChannel配置2.2.1 Reference Pwm通道配置2.2.2 触发ADC采集的Pwm通道配置3. ADC相关配置3.1 AdcHwExtTrigSelect配置4. MCU相关配置4.1 GTM配置4.1.1 McuGtmTomAllocationConf配置4.1.2 GtmTriggerForAdc配置1…...

Qt示例3:用Qt画一个温度计

示例1 以下是用Qt绘制一个简单的温度计的示例代码&#xff1a; #include <QPainter> #include <QWidget> #include <QApplication> class Thermometer : public QWidget { public:Thermometer(QWidget *parent 0); protected:void paintEvent(QPaintEvent …...

全卷积网络FCN

这里写目录标题全卷积网络FCN1、FCN2、FCN上采样3、 FCN具体实现过程转置卷积全卷积网络FCN 引用&#xff1a;http://t.csdn.cn/pDcjL 1、FCN FCN: FCN是对图像进行像素级的分类&#xff08;也就是每个像素点都进行分类&#xff09;&#xff0c;从而解决了语义级别的图像分割…...

【Linux】基础IO流(上)

文章目录1. 预备知识2. 回忆C接口fopenfputsfprintfsnprintf追加方式—— a以读方式—— r3.操作系统如何进行读写文件操作open操作系统是如何让用户给自己传递标志位的理解标记位的问题新创建文件权限不正确解决 umask的权限write默认不会对原始文件清空系统层面追加系统层面 …...

【C++】类和对象三大特性--多态

文章目录1. 多态的基本概念2. 多态的定义及实现2.1多态的构成条件2.2 虚函数2.3虚函数的重写2.4 虚函数不能重写和检查是否重写 &#xff08;C11 &#xff09;2.5 重载、覆盖(重写)、隐藏(重定义)的对比3. 纯虚函数和抽象类3.1 概念3.2 接口继承和实现继承4.多态的实现原理4.1虚…...

【微前端】qiankun + vite + vue3

专栏&#xff1a; 【微前端】什么是微前端【微前端】qiankun【微前端】qiankun vite vue3 一、整体结构 在 qiankun 体系下&#xff0c;一个微前端工程包含一个主应用和多个子应用。本质上&#xff0c;每个工程&#xff08;主应用&#xff09;都可以单独开发、运行。 1.1…...

模型部署之TorchScript

一.关于torchscript和jit介绍 1.关于torchscript TorchScript是Pytorch模型&#xff08;继承自nn.Module&#xff09;的中间表示&#xff0c;保存后的torchscript模型可以在像C这种高性能的环境中运行 TorchScript是一种从PyTorch代码创建可序列化和可优化模型的方法。任何T…...

修改linux网卡配置文件的文件名

修改linux网卡配置文件的文件名 查看自己系统中网卡配置文件的文件名 #查看网卡的配置文件名&#xff0c;已经网络的状态 ip a查看系统是否可以使用ifconfig命令 #输入命令 ifconfig #出现以下图片表示ifconfig的命令可用。可能出现的错误&#xff1a;ifconfig command no foun…...

年轻人为啥热衷去寺庙?

年轻人的苦&#xff0c;寺庙最清楚。 周末的寺庙挤满了年轻人&#xff0c;北京雍和宫限流了&#xff0c;杭州灵隐寺十八籽的手串限购了&#xff0c;南京鸡鸣寺从地铁站出口就开始排队了...... “上班和上学&#xff0c;你选择哪个&#xff1f;” ”我选择上香“ 工作和学习…...

Java Spring 框架

当今世界&#xff0c;Java Spring 成为了最流行的 Java 开发框架之一。Spring 框架是一个轻量级的、高效的框架&#xff0c;它是 Java 应用程序开发的理想选择。在本文中&#xff0c;我们将深入探讨 Java Spring 框架的特性、优点以及如何使用它来构建高质量的应用程序。 1.Ja…...

基于OpenCV的人脸识别

目录 &#x1f969; 前言 &#x1f356; 环境使用 &#x1f356; 模块使用 &#x1f356; 模块介绍 &#x1f356; 模块安装问题: &#x1f969; OpenCV 简介 &#x1f356; 安装 OpenCV 模块 &#x1f969; OpenCV 基本使用 &#x1f356; 读取图片 &#x1f357; 【…...

一文带你看懂电压放大器和功率放大器的区别

很多人对于电压放大器和功率放大器总是分不太清&#xff0c;在实际应用过程中&#xff0c;电压放大器和功率放大器所起到的作用都是相同的。对于功率放大器和电压放大器的区别&#xff0c;今天就让安泰电子来带我们一起看看。功率放大器和电压放大器的主要区别是&#xff1a;功…...

C++虚函数与多态

C虚函数与多态虚函数抽象类纯虚函数虚析构函数多态虚函数的几个问题纯虚函数和ADT虚函数 virtual修饰的成员函数就是虚函数&#xff0c; 1.虚函数对类的内存影响&#xff1a;增加一个指针类型大小&#xff08;32位和64位&#xff09; 2.无论有多少个虚函数&#xff0c;只增加一…...

蓝桥杯Web前端练习-----渐变色背景生成器

介绍 相信做过前端开发的小伙伴们对渐变色在 UI 设计中的流行度一定不陌生&#xff0c;网页上也时常可以看到各类复杂的渐变色生成工具。使用原生的 CSS 变量加一些 JS 函数就能做出一个简单的渐变色背景生成器。 现在渐变色生成器只完成了颜色选取的功能&#xff0c;需要大家…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...