当前位置: 首页 > news >正文

最优化算法 - 动态规划算法

动态规划算法简介

动态规划(Dynamic programming)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划算法是一种常用的优化算法,用于解决一些具有重叠子问题和最优子结构的问题,例如背包问题、最长公共子序列、矩阵连乘等。动态规划算法通过将问题划分为若干个重叠的子问题,并保存子问题的解,以避免重复计算,从而提高算法效率。

动态规划算法的基本思想是将一个大问题分解成若干个小问题,求解每个小问题的最优解,并保存下来。通过组合每个小问题的最优解,得到大问题的最优解。动态规划算法通常使用递归或迭代的方式实现。

动态规划算法是一种非常有用的算法设计技术,它适用于许多实际问题的求解。在实际应用中,我们需要根据问题的特点选择合适的动态规划算法,并注意避免时间和空间复杂度的过度增长。

动态规划算法步骤

  1. 定义问题的状态:通常使用一个或多个变量来表示问题的状态,例如背包问题中的剩余容量、最长公共子序列问题中的两个字符串的索引等。

  2. 定义状态转移方程:根据子问题之间的关系,定义状态转移方程。这个方程通常是一个递推式,用于计算当前状态的最优解。

  3. 初始化:将初始状态的最优解保存下来,通常是一个边界条件。

  4. 递推求解:使用状态转移方程求解每个子问题的最优解,并保存下来。

  5. 求解大问题:根据子问题的最优解,组合得到大问题的最优解。

动态规划算法应用

  1. 背包问题:将一些物品放入容量有限的背包中,使得所放物品总价值最大。
  2. 最长公共子序列问题:找到两个字符串中最长的相同子序列。
  3. 计算编辑距离:将一个字符串转换为另一个字符串所需的最少操作数。
  4. 矩阵链乘问题:将一堆矩阵相乘,找到最小的计算次数。
  5. 找零钱问题:找到最少的硬币数,以凑出给定的金额。
  6. 最大子序和问题:找到一个序列中连续的子序列,使得子序列的和最大。

动态规划算法示例

背包算法(Knapsack algorithm)是一种动态规划算法,用于在给定的一组物品中,选择一些物品装入背包,使得装入的物品总重量不超过背包容量,同时总价值最大。该问题被称为背包问题(Knapsack problem)。

背包问题有两种形式:01背包和完全背包。01背包问题中,每个物品最多只能选择一次,而在完全背包问题中,每个物品可以选择任意多次。

算法思路:

  1. 创建一个二维数组dp,其中dp[i][j]表示前i个物品放入容量为j的背包中所能获得的最大价值。
  2. 初始化dp数组的第一行和第一列为0,因为当背包容量为0或没有物品可选时,最大价值都为0。
  3. 遍历物品列表,并在dp数组中填充每个物品的最大价值。对于第i个物品,如果它的重量小于等于当前背包容量j,则可以选择放入背包或不放入背包。如果选择放入,那么背包内的可选物品为前i-1个物品,背包容量为j-w[i],价值为dp[i-1][j-w[i]] + v[i]。如果选择不放入,那么背包内的可选物品为前i-1个物品,背包容量为j,价值为dp[i-1][j]。选取两者中的最大值作为dp[i][j]的值。
  4. 最终,dp[n][m]即为所求的最大价值。

实现代码(Java):

public static int knapsack(int[] weight, int[] value, int W) {int n = weight.length;int[][] dp = new int[n + 1][W + 1];for (int i = 0; i <= n; i++) {for (int j = 0; j <= W; j++) {if (i == 0 || j == 0) {dp[i][j] = 0;} else if (weight[i - 1] <= j) {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);} else {dp[i][j] = dp[i - 1][j];}}}return dp[n][W];
}

其中,weight是物品的重量数组,value是物品的价值数组,W是背包的容量。

动态规划算法对比

动态规划算法和分治算法都是常用的算法设计技术,但它们之间有一些区别。

相同点:动态规划算法和分治算法都是将一个大问题分解成若干个小问题,然后求解每个小问题的解,最后将所有小问题的解组合起来得到大问题的解。

不同点:动态规划算法和分治算法的主要区别在于它们对子问题的处理方式。

(1)动态规划算法将子问题的解保存下来,以避免重复计算。在求解一个问题时,动态规划算法通常需要先求解其子问题,然后将子问题的解保存起来,最后利用子问题的解求解大问题。动态规划算法通常适用于具有重叠子问题和最优子结构的问题。

动态规划算法通常适用于求解最优化问题,例如背包问题、最长公共子序列问题、矩阵连乘问题等。

(2)分治算法则是将子问题分解成独立的部分,然后对每个部分分别求解,最后将各个部分的解组合起来得到大问题的解。分治算法通常适用于具有相互独立的子问题的问题。

分治算法通常适用于分布式计算、排序和查找等问题,例如归并排序、快速排序、二分查找等。

相关文章:

最优化算法 - 动态规划算法

动态规划算法简介 动态规划&#xff08;Dynamic programming&#xff09;是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的&#xff0c;通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结构性质的问题…...

springCloud学习【3】之Docker(1)

文章目录一 Docker环境准备1.1 应用部署的环境问题1.2 Docker简介1.3 Docker解决操作系统环境差异1.4 Docker和虚拟机的区别1.5 Docker架构1.5.1 镜像和容器1.5.2 DockerHub1.5.3 Docker架构1.5.4 Docker工作流1.6 Docker的安装和启动1.7 安装步骤1.8 启动Docker1.9 配置镜像加…...

难以置信,已经有人用 ChatGPT 做 Excel 报表了?

要问2023年初科技领域什么最火&#xff0c;那自然是 ChatGPT。 ChatGPT 由人工智能研究实验室 OpenAI 于2022年11月30日推出。上线短短5天&#xff0c;用户数量已突破100万&#xff0c;在今年2月份&#xff0c;用户数量已经突破1亿。 ChatGPT 是一个超级智能聊天机器人&#…...

中断相关操作函数HAL_NVIC_SetPriority()、HAL_NVIC_EnableIRQ()

文章目录HAL_NVIC_SetPriority()&#xff1a;设置中断优先级HAL_NVIC_EnableIRQ()&#xff1a;使能中断结束HAL_NVIC_SetPriority()&#xff1a;设置中断优先级 HAL_NVIC_SetPriority()函数是一个用于设置中断优先级的函数&#xff0c;其定义如下&#xff1a; void HAL_NVIC_…...

企业增长秘诀丨设立优质的帮助中心,加深用户产品使用深度,促进产品转化

客户的留存问题一直备受企业关注&#xff0c;留存率的高低反应了产品的真实状况&#xff0c;将直接影响企业后期的发展规划。下文将为大家剖析下产品中客户的转化流程&#xff0c;以及如何提高产品的使用深处与复购率。 产品中&#xff0c;从客户生命周期角度&#xff0c;可分…...

3.OSPF与BGP的联动

14.3实验3&#xff1a;OSPF与BGP联动配置 实验目的实验拓扑实验步骤 配置IP地址 AR1的配置 <Huawei>system-view Enter system view, return user view with CtrlZ. [Huawei]undo info-center enable Info: Information center is disabled. [Huawei]sysname AR1 …...

机器学习算法——决策树详解

文章目录前言&#xff1a;决策树的定义熵和信息熵的相关概念信息熵的简单理解经典的决策树算法ID3算法划分选择或划分标准——信息增益ID3算法的优缺点C4.5算法信息增益率划分选择或划分标准——Gini系数&#xff08;CART算法&#xff09;Gini系数计算举例CART算法的优缺点其他…...

配置Jenkins

目录 一.前言 1.1简介 1.2工作步骤图 二.配置jenkins部署项目 2.1项目新建 2.2jenkinsfile文件如下 三.jenkins工作台配置 3.1.点击新建item进入新建页面,输入任务名称,选择pipeline 3.2.选择第二个配置 3.4将ideal中jenkinsfile文件的路径粘入脚本路径中 3.5启动项目…...

【STL三】序列容器——array容器

【STL三】序列容器——array一、array简介二、头文件三、模板类四、成员函数1、迭代器2、元素访问3、容量4、操作五、demo1、容量&#xff08;不使用迭代器&#xff09;2、使用迭代器3、元素访问 at()、front()、back()、data()一、array简介 array 容器是 C 11 标准中新增的序…...

【STL四】序列容器——vector容器

【STL容器】序列容器——vector容器一、简介二、头文件三、模板类四、成员函数1、迭代器2、元素访问3、容量4、修改操作五、demo1、容量reserve、capacity、shrink_to_fit2、修改操作pop_back()、push_back3、修改操作insert()4、修改操作emplace()5、修改操作erase()、swap()、…...

4年功能测试,我一进阶python接口自动化测试,跳槽拿了20k......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 很多人在这求职市场…...

基于Pytorch的可视化工具

深度学习网络通常具有很深的层次结构&#xff0c;而且层与层之间通常会有并联、串联等连接方式。当使用PyTorch建立一个深度学习网络并输出文本向读者展示网络的连接方式是非常低效的&#xff0c;所以需要有效的工具将建立的深度学习网络结构有层次化的展示&#xff0c;这就需要…...

XCPC第十一站,带你学会图论基本算法

我们约定&#xff1a;以下n表示点的数目&#xff0c;m表示边的数目。 引子1——邻接表存储图的方法&#xff08;&#xff09;&#xff08;暂时不考虑重边和自环&#xff09; 现在我们有n个点&#xff08;编号为1~n&#xff09;和m条边&#xff0c;要用数组存储它们&#xff0c…...

【MySQL】1 MySQL的下载、安装与配置|提供安装包

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 目前,已开了以下专栏,欢迎关注与指导 1️⃣Java基础知识系统学习(持续更文中…) 2️⃣UML(已更完) 3️⃣MySQL(持续更文中…) MYSQL的下载、安装与配置1.下载MySQL5.71.1安装包的获…...

Redis 事务

目录Redis 事务一、Redis事务的概念&#xff1a;二、redis事务提出的逻辑&#xff1a;三、redis事务的基本操作四、事务的执行流程五、redis锁六、redis分布式锁Redis 事务 一、Redis事务的概念&#xff1a; Redis 事务的本质是一组命令的集合。事务支持一次执行多个命令&…...

【linux】:进程控制

文章目录 前言一、什么是写时拷贝二、进程控制 1.进程终止2.进程等待三丶进程程序替换总结前言 了解上一篇文章中的进程地址空间后&#xff0c;我们再来说说进程控制的概念&#xff0c;进程控制我们需要搞清楚三个问题&#xff1a;如何进程终止&#xff0c;如何解决僵尸进程问…...

在recyclerview中使用其item布局的ViewBinding类需要注意的问题

问题描述 最近在使用RecycerView的瀑布流布局&#xff0c;我想直接用ViewBinding取得item中的一个TextView然后根据position进行赋值。 比如我点击测试标题2&#xff0c;它在日志中应该能打印出测试标题2才对。 但是他却打印出“测试标题0” 按理来说标题应该更点击的位置对…...

基于EB工具的TC3xx_MCAL配置开发05_ADC模块硬件Pwm触发Demo配置

目录 1.概述2. Pwm相关配置2.1 PWM->General配置2.2 PWM->PwmChannel配置2.2.1 Reference Pwm通道配置2.2.2 触发ADC采集的Pwm通道配置3. ADC相关配置3.1 AdcHwExtTrigSelect配置4. MCU相关配置4.1 GTM配置4.1.1 McuGtmTomAllocationConf配置4.1.2 GtmTriggerForAdc配置1…...

Qt示例3:用Qt画一个温度计

示例1 以下是用Qt绘制一个简单的温度计的示例代码&#xff1a; #include <QPainter> #include <QWidget> #include <QApplication> class Thermometer : public QWidget { public:Thermometer(QWidget *parent 0); protected:void paintEvent(QPaintEvent …...

全卷积网络FCN

这里写目录标题全卷积网络FCN1、FCN2、FCN上采样3、 FCN具体实现过程转置卷积全卷积网络FCN 引用&#xff1a;http://t.csdn.cn/pDcjL 1、FCN FCN: FCN是对图像进行像素级的分类&#xff08;也就是每个像素点都进行分类&#xff09;&#xff0c;从而解决了语义级别的图像分割…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...