当前位置: 首页 > news >正文

01创建型设计模式——单例模式

一、单例模式简介

        单例模式(Singleton Pattern)是一种创建型设计模式(GoF书中解释创建型设计模式:一种用来处理对象的创建过程的模式),单例模式是其中的一种,它确保一个类只有一个实例,并提供一个全局访问点来获取这个实例。这个模式适用于那些需要一个全局唯一的对象来协调系统中的行为的情况。即在整个程序运行过程中,该类只存在一个对象(实例)。

GoF一书对单例模式的介绍

 二、单例模式的用处

单例模式常见的使用场景

  • 配置管理:全局配置管理器,确保配置只被加载一次并在全局范围内一致。
  • 日志记录:全局日志记录器,确保所有日志信息被记录在一个地方。
  • 线程池:全局线程池管理,避免多个线程池实例带来的资源浪费。
  • 数据库连接池:全局数据库连接池,统一管理数据库连接的创建和销毁

单例模式的优点包括:

1. 确保全局唯一性

  • 唯一性:单例模式确保一个类只有一个实例。这对于那些需要全局唯一的资源或管理类非常重要,例如配置管理器、日志记录器等。

  • 全局访问:单例模式提供了一个全局访问点来获取这个唯一实例,使得所有代码都可以通过统一的方式来访问该实例。

2. 控制资源访问

  • 资源管理:在某些情况下,某些资源(如数据库连接、线程池)只能由一个实例进行管理。使用单例模式可以有效地控制这些资源的创建和销毁,避免资源的重复创建和管理。

  • 性能优化:通过避免创建多个实例,单例模式可以减少系统开销和资源浪费。

3. 简化接口

  • 简化使用:由于只有一个实例,使用单例模式的类不需要考虑实例的创建和管理,使用时更简单直观。

  • 一致性:可以保证对全局状态的一致性和统一管理,减少了不同实例间的状态不一致问题。

4. 延迟实例化

  • 懒加载:通过懒汉式实现,单例模式可以实现延迟初始化(即实例在第一次使用时创建),从而提高系统启动速度并节省资源,直到确实需要实例时才创建它。

5. 避免多次实例化

  • 避免浪费:有些对象的创建和初始化代价较高,使用单例模式可以避免重复创建这些对象,从而节省计算资源和时间。

三、单例模式的设计步骤

a)私有化构造函数

b)提供一个全局的静态方法(全局访问点)

c)在类中定义一个静态指针,指向该类的对象(静态指针由全局访问点获取)

四、单例模式的两种设计方法

1)懒汉式(Lazy Initialization

这种设计方式只有在第一次使用时才会创建实例,这种方式的优点是延迟初始化。通常使用静态局部变量来实现线程安全的懒加载。

2)饿汉式(Eager Initialization

在这种实现中,单例实例在程序启动时就被创建。也就是不管有没有被使用,只要程序运行就会创建该对象。这个实现简单,但如果单例实例的创建开销较大,可能会导致程序启动变慢,且可能会浪费资源。

懒汉式代码示例:

lazy.cpp

#include <iostream>//Lazy Initialization
class Singleton {
public:// 获取单例实例的公共方法static Singleton& getInstance() {static Singleton instance; // 静态局部变量,线程安全return instance;}// 禁止复制构造函数和赋值操作符Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;// 其他成员变量和方法void doWorking() const {std::cout<<"我是懒汉式创建型设计模式——单例模式! "<<std::endl;}private:Singleton() {} // 私有构造函数};// 使用示例
int main() {Singleton& singleton = Singleton::getInstance();Singleton* ptr = &Singleton::getInstance();//判断是否调用同一个对象if ( &singleton == ptr){std::cout<<"我们是同一个对象! "<<std::endl;}else{std::cout<<"我们是不同的对象! "<<std::endl;}//调用对象的方法singleton.doWorking();ptr->doWorking();return 0;
}

运行效果

 

饿汉式代码示例:

eager.cpp

#include <iostream>//Eager Initialization
class Singleton {
public:// 获取单例实例的公共方法static Singleton& getInstance() {return instance;}// 禁止复制构造函数和赋值操作符Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;// 其他成员变量和方法void doWorking() const {std::cout<<"我是饿汉式创建型设计模式——单例模式! "<<std::endl;}private:Singleton() {} // 私有构造函数static Singleton instance; // 声明静态成员};Singleton Singleton::instance; // 定义并初始化静态成员(只要程序运行就创建该实例)// 使用示例
int main() {Singleton& singleton = Singleton::getInstance();Singleton* ptr = &Singleton::getInstance();//判断是否调用同一个对象if ( &singleton == ptr){std::cout<<"我们是同一个对象! "<<std::endl;}else{std::cout<<"我们是不同的对象! "<<std::endl;}//调用对象的方法singleton.doWorking();ptr->doWorking();return 0;
}

运行效果

3)单例模式的线程安全问题

使用饿汉式方法创建单例模式,如果不使用静态局部变量,而是使用裸指针+判断的方式创建单例,很容易引发多线程的资源竞争问题。(线程在空闲状态下可以挂起)

使用双重检查锁定(Double-Checked Locking)来确保多线程环境下的单例创建的安全性。

示例代码:

doubleLock.cpp

#include <iostream>
#include <mutex>//线程安全的双重检查锁定
class Singleton {
public:static Singleton* getInstance() {if (!instance) {std::lock_guard<std::mutex> lock(mutex);if (!instance) {instance = new Singleton();}}return instance;}// 禁止复制构造函数和赋值操作符Singleton(const Singleton&) = delete;Singleton& operator=(const Singleton&) = delete;// 其他成员变量和方法void doWorking() const {std::cout<<"我是懒汉式单例模式——我使用了双重检查锁定保证我的创建安全! "<<std::endl;}private:Singleton() {} // 私有构造函数//类中声明静态变量static Singleton* instance;static std::mutex mutex;};Singleton* Singleton::instance = nullptr;    //定义并初始化指针为空
std::mutex Singleton::mutex;    //定义并初始化互斥锁// 使用示例
int main() {Singleton* singleton = Singleton::getInstance();Singleton* ptr = Singleton::getInstance();//判断是否调用同一个对象if (singleton == ptr){std::cout<<"我们是同一个对象! "<<std::endl;}else{std::cout<<"我们是不同的对象! "<<std::endl;}//调用对象的方法singleton->doWorking();ptr->doWorking();return 0;
}

运行效果

 

23种设计模式中,单例模式是比较简单的一种,但是涉及到的知识面也是很多的,比如线程、互斥、同步等。 后面我还会继续讲解其他设计模式,敬请期待啦(¬‿¬)

相关文章:

01创建型设计模式——单例模式

一、单例模式简介 单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff08;GoF书中解释创建型设计模式&#xff1a;一种用来处理对象的创建过程的模式&#xff09;&#xff0c;单例模式是其中的一种&#xff0c;它确保一个类只有一个实例&#xff…...

图像分割(一)

一、概述 语义分割&#xff1a;是把每个像素都打上标签&#xff08;这个像素点是人、树、背景等&#xff09; 实例分割&#xff1a;不光要区别类别&#xff0c;还要区分类别中的每一个个体 损失函数&#xff1a;逐像素的交叉熵&#xff1b;样本均衡问题 MIOU指标&#xff1a…...

C++ 新经典:设计模式 目录(先留框架,慢慢来~)

C 新经典&#xff1a;设计模式 C 新经典&#xff1a;设计模式 C 新经典&#xff1a;设计模式第1章 设计模式与软件开发思想、编程环境介绍第2章 模板方法模式第3章 工厂模式、原型模式、建造者模式第4章 策略模式第5章 观察者模式第6章 装饰模式第7章 单件模式第8章 外观模式第…...

go之命令行工具urfave-cli

一、urfave/cli urfave/cli 是一个声明性的、简单、快速且有趣的包&#xff0c;用于用 Go 构建命令行工具。 二、快速使用 2.1 引入依赖 go get github.com/urfave/cli/v2 2.2 demo package mainimport ("fmt""log""os""github.com/ur…...

四种应用层协议——MQTT、CoAP、WebSockets和HTTP——在工业物联网监控系统中的性能比较

目录 摘要(Abstract) 实验设置 实验结果 节选自《A Comparative Analysis of Application Layer Protocols within an Industrial Internet of Things Monitoring System》&#xff0c;作者是 Jurgen Aquilina、Peter Albert Xuereb、Emmanuel Francalanza、Jasmine Mallia …...

MySQL的脏读、不可重复读、幻读与隔离级别

脏读/不可重复读/幻读 脏读 脏读(Dirty Read)发生在一个事务读取了另一个事务尚未提交的数据。如果第二个事务失败并回滚&#xff0c;第一个事务读到的数据就是错误的。这意味着数据从一开始就是不稳定或者“脏”的。 举例 事务A读取了某条记录的值为X。事务B修改该记录的值…...

程序员前端开发者的AI绘画副业之路:在裁员危机中寻找新机遇

正文&#xff1a; 在这个充满变数的时代&#xff0c;作为一名前端开发者&#xff0c;我经历了行业的起伏&#xff0c;见证了裁员危机和中年失业危机的残酷。在这样的背景下&#xff0c;我开始了利用AI绘画作为副业的探索&#xff0c;不仅为了寻求经济上的稳定&#xff0c;更是为…...

Burp Suite的使用和文件上传漏洞靶场试验

第一步&#xff1a;分析如何利用漏洞&#xff0c;通过对代码的查阅发现&#xff0c;代码的逻辑是先上传后删除&#xff0c;意味着&#xff0c;我可以利用webshell.php文件在上传到删除之间的间隙&#xff0c;执行webshell.php的代码&#xff0c;给上级目录创建一个shell.php木马…...

如何在Ubuntu中安装deepin wine版的企业微信

如何在Ubuntu中安装deepin wine版的企业微信 运行如下一条命令将移植仓库添加到系统中 wget -O- https://deepin-wine.i-m.dev/setup.sh | sh自此以后&#xff0c;你可以像对待普通的软件包一样&#xff0c;使用apt-get系列命令进行各种应用安装、更新和卸载清理了。 安装企业…...

案例:Nginx + Tomcat集群(负载均衡 动静分离)

目录 案例 案例环境 案例步骤 部署Tomcat服务器 部署Nginx服务器 实现负载均衡和读写分离 日志控制 案例 案例环境 操作系统 IP 地址 角色 CentOS 192.168.10.101 Nginx服务器&#xff08;调度器&#xff09; CentOS 192.168.10.102 Tomcat服务器① CentOS 1…...

【密码学】密码协议的分类:②认证协议

密码协议的分类有很多种方式&#xff0c;这里我采取的是基于协议实现的目的来分类。可以将密码协议分成三类&#xff1a;认证协议、密钥建立协议、认证密钥建立协议。 一、认证协议是什么&#xff1f; 认证协议都在认证些什么东西呢&#xff1f;认证一般要认证三个东西&#x…...

异步编程(Promise详解)

目录 异步编程 回调函数 回调地狱 Promise 基本概念 Promise的特点 1.Promise是一种构造函数 2.Promise接收函数创建实例 3.Promise对象有三种状态 4.Promise状态转变不可逆 5.Promise 实例创建即执行 6.Promise可注册处理函数 7.Promise支持链式调用 Promise的静…...

DjangoORM注入分享

DjangoORM注入 简介 ​ 这篇文章中&#xff0c;分享一些关于django orm相关的技术积累和如果orm注入相关的安全问题讨论。 ​ 攻击效果同数据库注入 从Django-Orm开始 开发角度 ​ Django ORM&#xff08;Object-Relational Mapping&#xff09;是Django框架中用于处理数…...

【HBZ分享】Redis各种类型的数据结构应用场景

String(字符串类型) 计数器&#xff1a; incr / decr, 比如商品库存&#xff0c;业务号的发号器业务数据key-value缓存&#xff0c; 缓存结果数据&#xff0c;提高网站性能&#xff0c;缓解DB压力分布式session会话&#xff0c; 集群环境下存储token鉴权信息分布式锁&#xff…...

anaconda创建并且配置pytorch(完整版)

&#x1f4da;博客主页&#xff1a;knighthood2001 ✨公众号&#xff1a;认知up吧 ** &#x1f383;知识星球&#xff1a;【认知up吧|成长|副业】介绍** ❤️如遇文章付费&#xff0c;可先看看我公众号中是否发布免费文章❤️ &#x1f64f;笔者水平有限&#xff0c;欢迎各位大…...

高级java每日一道面试题-2024年8月10日-网络篇-你对跨域了解多少?

如果有遗漏,评论区告诉我进行补充 面试官: 你对跨域了解多少? 我回答: 跨域问题&#xff0c;即Cross-Origin Resource Sharing&#xff08;CORS&#xff09;&#xff0c;是现代Web开发中一个非常重要的概念&#xff0c;涉及到浏览器的安全策略——同源策略&#xff08;Same…...

AtCoder Beginner Contest 365 A~E

A.Leap Year&#xff08;思维&#xff09; 题意&#xff1a; 给你一个介于 1583 1583 1583和 2023 2023 2023之间的整数 Y Y Y。 求公历 Y Y Y年的天数。 在给定的范围内&#xff0c; Y Y Y年的天数如下&#xff1a; 如果 Y Y Y不是 4 4 4的倍数&#xff0c;则为 365 365 …...

多机部署, 负载均衡-LoadBalance

目录 1.负载均衡介绍 1.1问题描述 1.2什么是负载均衡 1.3负载均衡的一些实现 服务端负载均衡 客户端负载均衡 2.Spring Cloud LoadBalancer 2.1快速上手实现负载均衡 2.2负载均衡策略 自定义负载均衡策略 3.服务部署&#xff08;Linux&#xff09; 3.1服务构建打包…...

(回溯) LeetCode 78. 子集

原题链接 一. 题目描述 给你一个整数数组 nums &#xff0c;数组中的元素 互不相同 。返回该数组所有可能的 子集 &#xff08;幂集&#xff09;。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&…...

DQL数据查询语言(多表处理)—/—<7>

一、多表处理 当前有两个表&#xff0c;一个是学生表student&#xff0c;一个是分数表score student表字段名表示如下&#xff08;共1000条数据&#xff09;&#xff1a; score表字段表示如下&#xff08;共6000条数据&#xff09;&#xff1a; 1、求每个学生的总分 SELECT …...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...