当前位置: 首页 > news >正文

数据库规范化设计 5大基本原则

       规范化设计原则是数据库设计的基本原则,有助于减少数据冗余,提高数据一致性和完整性,简化数据管理,增强数据安全性,对整个开发项目至关重要。而缺乏规范化设计会导致数据冗余,增加存储成本,引发更新、插入和删除异常,不利于数据安全性和扩展性。

       因此,规范化设计对数据库设计而言非常重要,以下是数据库规范化设计的5大原则:

数据库规范化
数据库规范化

       1. 第一范式 (1NF)

      在设计数据库时,应首先遵循第一范式(1NF),并逐步进行规范化,直至达到第三范式(3NF)。对于特定场景,可能需要进一步应用更高层次的范式,如BCNF和4NF。

        第一范式 (1NF),需要确保数据库表中每个字段都是不可分割的基本数据项,每个记录都是唯一的数据元素,而不是列表或集合。

       因此,应消除表中的重复列,确保所有列都是原子性的,即不可再分割为更小的数据项。同时,应避免在同一列中存储多个相互关联但独立的值。

数据库规范原则:第一范式
数据库规范原则:第一范式

       2. 第二范式 (2NF)

       需确保确保表满足1NF,并且所有非主键列完全依赖于整个主键,而非主键的任何一部分。

       如果一个表有复合主键,应将那些只依赖于主键一部分的非主键字段分离到新的表中。另外,在应用第二范式(2NF)之前,必须确保数据库已经满足第一范式(1NF),因为2NF是建立在1NF基础之上的进一步规范化。

数据库规范原则:第二范式
数据库规范原则:第二范式

       3. 第三范式 (3NF)

      需确保表满足2NF,并且所有非主键列直接依赖于主键,而不是间接依赖于其他非主键列。即消除表中的传递依赖,确保非主键字段既不依赖于其他非主键字段,也不传递依赖于主键。

       在应用第三范式(3NF)时,应仔细识别并解决传递依赖,以避免不必要的表分裂。应将那些依赖于非主键列的信息分离到单独的表中,以确保数据的独立性。

数据库规范原则:第三范式
数据库规范原则:第三范式

       4. Boyce-Codd范式 (BCNF)

       确保表满足3NF,消除多维表中的多值依赖,确保表中的每个组合键都能唯一决定非键字段的值。

       若表中存在多值依赖,应将相关的非键字段分离到与多值依赖的组合键相对应的多个表中,以确保数据的正确性和一致性。以确保表中的每一个非平凡函数依赖的左部都是候选键。另外,需要确保不存在非主键列依赖于非候选键的情况,分解那些违反BCNF的表,直到所有非主键列直接依赖于候选键。

数据库规范原则:BCNF范式
数据库规范原则:BCNF范式

       5. 第四范式 (4NF)

        确保表满足BCNF,并且表中不存在多值依赖。消除多值依赖,即当两个非主键列之间存在多对多关系时,应该将它们分离到单独的表中。

      多值依赖通常发生在包含集合的列中。分离那些存在多值依赖的列到新的表中,以消除这种依赖。

数据库规范原则:第四范式
数据库规范原则:第四范式

      此外,为了进一步提高数据库设计效率,可以使用AI功能,如CoCodeAI生成数据库功能,基于项目需求和设计,通过AI智能模型,实现一键自动生成数据库的功能,减轻了手动设计和编写数据库的工作量,提高了设计效率和质量。

CoCodeAI生成数据库
CoCodeAI生成数据库

       以上是数据库规范化设计的5大基本原则。而数据库规范化的注意事项:减少冗余,避免更新、插入和删除异常;平衡性能与规范化,适度反规范化以提升查询效率;考虑业务需求,简化复杂查询;维护数据一致性与安全性;控制维护成本。

相关文章:

数据库规范化设计 5大基本原则

规范化设计原则是数据库设计的基本原则,有助于减少数据冗余,提高数据一致性和完整性,简化数据管理,增强数据安全性,对整个开发项目至关重要。而缺乏规范化设计会导致数据冗余,增加存储成本,引发…...

【nginx】解决k8s中部署nginx转发不会自动更新域名解析启动失败的问题

文章目录 1. 问题2.解决办法3.扩展说明3.1 DNS解析阶段划分3.2 问题说明3.2.1 先看/etc/resolv.conf说明3.2.2 针对第一个问题3.2.3 针对第二个问题 【后端】NginxluaOpenResty高性能实践 参考: https://blog.csdn.net/u010837612/article/details/123275026 1. 问…...

LeetCode637 二叉树的层平均值

前言 题目: 637. 二叉树的层平均值 文档: 代码随想录——二叉树的层平均值 编程语言: C 解题状态: 求取平均值的时候出现了点问题 思路 C中,浮点数的相加会产生精度误差,求取平均值时最好只在最后一步进行…...

王学岗ASM

服务发现 package com.example.testasm;import android.content.Context; import android.os.Bundle;import androidx.activity.EdgeToEdge; import androidx.appcompat.app.AppCompatActivity; import androidx.core.graphics.Insets; import androidx.core.view.ViewCompat;…...

【数据结构】—— 队列

1、队列的概念2、队列的结构如何选择合适的数据结构实现队列(数组or链表) 3、队列的链式存储3.1 队列的链式存储结构3.2 队列的常见接口3.3 队列的接口实现初始化判空入队列出队列获取队头元素获取队尾元素获取节点个数销毁 3.4 源代码 4、队列的顺序存储…...

vue中openlayers过滤高亮显示某个图层

vue中openlayers过滤高亮显示某个图层 openlayers库没有直接支持这样设置,所以可以使用库:ol-ext,地址:https://viglino.github.io/ol-ext/examples/filter/map.filter.crop.html 效果: 关键代码: /**…...

WPF篇(11)-ToolTip控件(提示工具)+Popup弹出窗口

ToolTip控件 ToolTip控件继承于ContentControl,它不能有逻辑或视觉父级,意思是说它不能以控件的形式实例化,它必须依附于某个控件。因为它的功能被设计成提示信息,当鼠标移动到某个控件上方时,悬停一会儿,…...

【mysql 第一篇章】系统和数据库的交互方法

一、宏观的查看系统怎么和数据库交互 在我们刚刚接触系统和数据库的时候不明白其中的原理,只知道系统和数据库是需要交互的。所以我们会理解成上图的形式。 二、MYSQL 驱动 随着我们的学习时间的加长以及对程序的了解,发现链接数据库是需要有别的工具辅…...

数据结构-位运算总结

位运算总结: 1.求位1的个数 191. 位1的个数 - 力扣(LeetCode) 有两种写法: 1.是把该数不断的去与0x1相与,得到该数的最后一位的值,然后判断他是不是1,再把该数更新一下整体往后移动一位也就…...

java 异常堆栈的由来

编写的程序代码内部错误产生的异常,如调用对象为空(空指针异常)、数组越界异常、除0异常等。这种通常称为未检查的异常(Runtime异常子类),在虚拟机中执行时会集中处理这些异常。其他运行中异常,通过throw语句主动抛出的…...

【推荐系统】【多任务学习】Progressive Layered Extraction (PLE)

Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations 文章目录 Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations1 论文出处2 背景2.1 背景介…...

java -转win32/win64免安装jre环境运行

由于java 转为exe,只能在装有JDK环境的电脑运行, 发给其他人也不能运行,缺少环境,程序自己背着jre走 1.先打好jar 包 2.使用exe4j 把jar包转成exe 运行程序 3.使用inno stup ,把exe运行程序加上jre环境 以下是具体实现…...

算法板子:容斥原理——求出 1∼n 中能被质数 p1,p2,…,pm 中的至少一个数整除的整数有多少个

1. 题目要点 1. 设:求1~10中能被质数2和3中至少一个数整除的数有多少个。1~10中能被质数2整除的数的集合记为S1{2,4,6,8,10},能被质数3整除的数的集合记为S2{3,6,9},能同时被质数2和3整数的数的集合为S1∩S2{6} 2. 这道题的目的是求S1∪S2∪S…...

用gurobipy求解带不等式约束条件的优化问题

1. 引入 在当今的数据驱动世界中,优化问题无处不在,从工程设计到经济模型,再到机器学习算法的调参,优化都是实现效率最大化、成本最小化或性能最优化的关键工具。 这里有一个典型的数学优化问题,目标是在给定的约束条…...

漏洞复现-Adobe ColdFusion 远程代码执行漏洞(CVE-2023-38203)

1.漏洞描述 Adobe ColdFusion是一种服务器端的Web应用开发平台。它由Adobe Systems开发,用于创建动态的、交互式的Web应用程序和网站。 Adobe ColdFusion在2018u17及之前版本、2021u7及之前版本和2023u1及之前版本中存在任意代码执行漏洞。该漏洞是由于反序列化不…...

Spring-MyBatis整合:No qualifying bean of type ‘XXX‘ available: ...

1.看一下核心配置中有没有导入myBatis配置 2.看一下service和dao有没有相应注解 3.看一下MyBatisConfig中有没有对sqlSessionFactory和mapperScannerConfigurer注释成bean对象以及有没有配置映射文件路径...

gitea docker 快捷安装部署

前言 在前一篇博文(什么是 Gitea?)中,我们详细介绍了gitea的功能特性,以及其与其它git服务器之间的特性多维度对比。 在本文中,我们将详细介绍gitea的快捷安装部署,docker方式! 1…...

CLAMP-1

一、信息收集 1、主机发现 nmap 192.168.236.0/24 2、端口扫描 nmap 192.168.236.173 -p- -A 3、目录扫描 dirb http://192.168.236.173 二、漏洞探测 访问80端口 访问 /nt4stopc/ 下面有一些问题,提示必须收集答案 都是一些判断题,对与错对应1与0&…...

Blender的Python编程介绍

在Blender这个免费的开源3D设计软件中,最值得称道的一点是可以用Python程序来辅助进行3D设计,我们可以通过Python来调整物体的属性,生成新的物体,甚至生成新的动画等等。 在最近的一个项目中,我用Blender制作了一个动…...

树莓派4/5:运行Yolov5n模型(文末附镜像文件)

〇、前言 因国内网络问题,可直接烧录文末镜像文件,或者按照本教程进行手动操作。 一、实验目的 在树莓派4B运行Yolov5n模型。 二、实验条件 1、Windows 11计算机:安装了Mobaxterm 2、树莓派4B:64Bit Lite OS,安装了…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...