当前位置: 首页 > news >正文

机器学习第一课

1.背景

有监督学习:有标签(连续变量(回归问题:时间序列等)、分类变量(分类))

无监督学习:没有标签(聚类、关联(相关性分析:哪些相关,看特征))

半监督学习:少量标签(分类标签(分类、聚类))

强化学习:(标签为分类变量(分类)或者没有标签(控制))

步骤:

过程:

机器训练过程:训练数据—>输入到程序算法中,根据输出得到的模型—>目标变量,通过调整程序,再到程序算法中

得到算法的实际精度:测试数据—>输入到程序算法中,输出—>目标变量与实际样本对比得到精度。

目标变量值为标签

监督学习(有标签)

无监督学习(没有标签)聚类分析

半监督学习(部分标签)有标签+无标签 经过训练得到模型,再检验所有数据

目标函数:

交叉验证

划分数据集,在训练集上训练模型,在测试集上验证结果,根据验证结果调参数(但不科学)

Validation set  验证集   Test set 测试集

大部分实验只分了训练集和测试集没有去分验证集这个说法大家都是在训练集上去训练,测试集上去调参(公平对比)

总数据中的部分,分出来,进行验证看拟合效果,因为预测未知数据,无法判断预测效果的好

10折交叉验证\5折交叉

时间序列,划分多段

学习率Learning rate ,正则化参数 ,层数,维度, epoch迭代次数(防止过拟合)

目标变量和特征都是机器学习中的重要概念,它们在模型训练和预测中有着不同的作用。

目标变量(Target Variable)指的是我们希望预测或分类的变量。也可以称为因变量(Dependent Variable)。在监督学习中,我们需要根据一组已知的特征数据来预测目标变量的值,目标变量可以是连续的数值型变量,也可以是离散的分类型变量。

特征(Feature)则是指模型用来做出预测的输入变量。也可以称为自变量(Independent Variable)。在监督学习中,我们使用一组特征来预测目标变量的值。特征可以是连续的数值型变量,也可以是离散的分类型变量,还可以是其他类型的变量,例如文本、图像等。

可以这样理解:目标变量是我们预测的结果或输出,而特征是我们用来进行预测的输入。例如,我们想要根据房屋的大小、位置、卧室数量等特征来预测房价,那么房价就是目标变量,而房屋的大小、位置、卧室数量就是特征。

在机器学习模型训练中,我们通常会将目标变量和特征分别作为训练数据的输出和输入。我们使用已知的特征和目标变量来训练模型,然后使用该模型对新的特征数据进行预测,从而得到预测结果。

相关文章:

机器学习第一课

1.背景 有监督学习:有标签(连续变量(回归问题:时间序列等)、分类变量(分类)) 无监督学习:没有标签(聚类、关联(相关性分析:哪些相关…...

C语言典型例题32

《C程序设计教程(第四版)——谭浩强》 习题2.9 编程序用getchar函数读入两个字符给c1,c2,然后分别用putchar函数和printf函数输出这两个字符。 (1)变量c1,c2应该定义为字符型或者整型吗&#x…...

第二十五天学习笔记2024.8.9

1、通过frp内网穿透共享数据库信息 [root1 ~]# mysql -p密码 mysql> create user li% identified by 1; mysql> create database test; mysql> grant all on test.* to li; [root1 ~]# tar -xf frp_0.33.0_linux_amd64.tar.gz [root1 ~]# cd frp_0.33.0_linux_a…...

sqlserver将一张表导出成txt

bcp zjwb_sb_20111122.dbo.ep_pb_groupvisitplace out c:/1.txt -n -U sa -P sa...

YOLOv8+DeepSort实现

目录 1,YOLOv8算法简介 2,DeepSort算法介绍 1. SORT目标追踪 3,实现流程 1.检测 2. 生成detections 3. 卡尔曼滤波预测 4.使用匈牙利算法将预测后的tracks和当前帧中的detections进行匹配 5. 卡尔曼滤波更新 4,代码实现 …...

「链表」链表原地算法合集:原地翻转|原地删除|原地取中|原地查重 / LeetCode 206|237|2095|287(C++)

概述 对于一张单向链表,我们总是使用双指针实现一些算法逻辑,这旨在用常量级别空间复杂度和线性时间复杂度来解决一些问题。 所谓原地算法,是指不使用额外空间的算法。 现在,我们利用双指针实现以下四种行为。 //Definition fo…...

【STM32】SPI通信和RTC实时时钟

个人主页~ SPI通信和RTC实时时钟 SPI通信一、简介二、硬件电路三、基本原理四、SPI时序1、时序基本单元2、时序 五、FLASH操作注意事项1、写入操作2、读取操作 六、SPI外设1、简介2、结构 七、传输方式1、主模式全双工连续传输2、非连续传输 RTC实时时钟一、Unix时间戳二、BKP1…...

DAMA学习笔记(十三)-大数据和数据科学

1.引言 大数据不仅指数据的量大,也指数据的种类多(结构化的和非结构化的,文档、文件、音频、视频、流数据等),以及数据产生的速度快。数据科学家是指从从数据中探究、研发预测模型、机器学习模型、规范性模型和分析方法…...

【Java】Java 中的 toLowerCase() 方法详解

我最爱的那首歌最爱的angel 我到什么时候才能遇见我的angel 我最爱的那首歌最爱的angel 我不是王子也会拥有我的angel 🎵 张杰《云中的angel》 在 Java 编程中,字符串处理是一个非常常见的任务。为了便于开发者操作和格式化字符串&…...

Linux: 进程概念详解

1. 冯诺依曼体系结构 截至目前,我们所认识的计算机,都是有一个个的硬件组件组成 。 【注意】: a. 这里的存储器指的是内存 b. 不考虑缓存情况,这里的CPU能且只能对内存进行读写,不能访问外设(输入或输出设备) c.外…...

【C++】模板详细讲解(含反向迭代器)

欢迎来到我的Blog,点击关注哦💕 前言: C的模板在是泛型编程的重要组成部分,编写在不同类型上工作的代码,而无需为每个类型编写重复的代码,这有助于减少代码冗余并提高代码的可维护性。 模板 模板的介绍 …...

haproxy七层代理详解之-完整安装部署流程及负载均衡实现-及热更新方法

一.负载均衡 1.1负载均衡时什么 负载均衡:Load Balance,简称LB,是一种服务或基于硬件设备等实现的高可用反向代理技术,负载均网络流量等)分担给指定的一个或多个后端特定的服务器或设备,从而提高了衡将特定的业务(web服务、公司…...

C++11 bind

bind bind 用来将可调用对象和参数一起进行绑定。可调用对象包括普通函数、全局函 数、静态函数、类静态函数甚至是类成员函数,参数包括普通参数和类成员。绑定后的 结果,可以使用 std::function 进行保存,并延迟调用到我们需要的时候。 绑…...

LeetCode199 二叉树的右视图

前言 题目: 199. 二叉树的右视图 文档: 代码随想录——二叉树的右视图 编程语言: C 解题状态: 成功解决! 思路 二叉树层序遍历问题的变种,右视图即意味着二叉树每层的最后一个节点。 代码 /*** Definiti…...

数据赋能(172)——开发:数据挖掘——影响因素、直接作用、主要特征

影响因素 主要影响因素如下: 数据类型与属性: 数据类型和对象的不同属性会使用不同的数据类型来描述,如年龄可能是整数类型,而生日则是日期类型。数据挖掘时需要对不同的数据类型进行不同的处理,这直接影响到挖掘算法…...

Vue:Vue3-TypeScript-Pinia-Vite-pnpm / 基础项目 / 20240807

一、项目技术栈 / 依赖 序号技术栈版本解释1node20.14.02vue 3.4.31 3vite 5.3.4 4TypeScript 5.2.2 5 types/node 22.0.2 解决TypeScript项目中缺少对应模块的类型定义文件的问题6 element-plus 2.7.8 ui组建7 types/js-cookie js-cookie 3.0.6 3.0.5 8 sass 1.77.8 9 hu…...

windows Qt 录屏 录音

启动录屏录音&#xff1a; connect(&m_Process, &QProcess::readyReadStandardOutput, [&]() {qDebug() << "Standard output:" << QString::fromLocal8Bit(m_Process.readAllStandardOutput()); });connect(&m_Process, &QProcess…...

AAC中的ADTS格式分析

&#x1f60e; 作者介绍&#xff1a;欢迎来到我的主页&#x1f448;&#xff0c;我是程序员行者孙&#xff0c;一个热爱分享技术的制能工人。计算机本硕&#xff0c;人工制能研究生。公众号&#xff1a;AI Sun&#xff08;领取大厂面经等资料&#xff09;&#xff0c;欢迎加我的…...

iOS内存管理---MRC vs ARC

系列文章目录 iOS基础—Block iOS基础—Protocol iOS基础—KVC vs KVO iOS网络—AFNetworking iOS网络—NSURLSession iOS内存管理—MRC vs ARC iOS基础—Category vs Extension iOS基础—多线程&#xff1a;GCD、NSThread、NSOperation iOS基础—常用三方库&#xff1a;Mason…...

【数学分析笔记】第1章第1节:集合(2)

这节我自己补了一些内容&#xff0c;要不然听不太懂陈纪修老师讲的 1. 集合与映射 1.3 子集与真子集 假如有 S \textbf{S} S和 T \textbf{T} T两个集合&#xff0c;其中&#xff0c; S \textbf{S} S的所有元素都属于 T \textbf{T} T&#xff0c;则称 S \textbf{S} S是 T \te…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...