【深度学习实践】基于深度学习的图像去雾算法-ChaIR-实践
本文介绍一个去雾算法ChaIR的使用方法,可以完成图像去雾,也可以用于图像去雨、去噪音等任务。本文不涉及论文原理,只包含源代码的跑通和使用。
先展示一下效果:
| 原图 | 去雾 |
![]() | ![]() |
![]() | ![]() |
论文:Exploring the potential of channel interactions for image restoration
代码地址:https://github.com/c-yn/ChaIR/tree/main/Dehazing
本文的代码及数据集、训练好的权重:图像去雾代码-SOTS划分好的8:2数据集-训练好的去雾权重-包含推理代码
一、准备数据集
作者在github中给出了去雾数据集reside-indoor,reside-outdoor ,SOTS的地址,因为reside-indoor/outdoor太大了,本文介绍SOTS数据集的使用方法。
数据集地址:
| 数据集 | google drive | 百度云 |
| reside-indoor | https://drive.google.com/drive/folders/1pbtfTp29j7Ip-mRzDpMpyopCfXd-ZJhC?usp=sharing | 百度网盘 请输入提取码 |
| reside-outdoor | https://drive.google.com/drive/folders/1eL4Qs-WNj7PzsKwDRsgUEzmysdjkRs22?usp=sharing | - |
| SOTS | https://drive.google.com/file/d/16j2dwVIa9q_0RtpIXMzhu-7Q6dwz_D1N/view?usp=sharing | 百度网盘 请输入提取码 |
这里请注意,使用SOTS需要将其转换为如下格式:

SOTS数据集也有indoor和outdoor,本文只使用outdoor,本文将SOTS outdoor数据集按照8:2划分训练集和测试集,并提供转换好的数据连接:SOTS数据集8:2划分训练和验证集,可用于训练去雾模型
准备好了数据集之后,按照如下目录结构放置即可:

至此数据集准备完成。
二、安装环境
接下来安装conda环境,首先下载代码:
git clone https://github.com/c-yn/ChaIR.git
cd ChaIR
创建虚拟环境:
conda create -n chair python=3.10
conda activate chair
按照官网教程安装pytorch,我安装的是torch 2.3.1 cuda118(可以跳过):
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
安装pytorch-gradual-warmup-lr:
cd pytorch-gradual-warmup-lr
python setup.py install
后续使用过程中会提示缺少相关库,因为源代码未提供requirements.txt库,缺少的库需要自行安装,本文不做赘述。
三、训练验证
环境安装完成,因为本文只介绍去雾模型,所以进入ChaIR/Dehazing/OTS目录:
cd ChaIR/Dehazing/OTS
开始训练,如果显存不够,可以降低batch size,我用的rtx3060,我把batch size降低为2:
python main.py --mode train --data_dir SOTS/outdoor
训练完成后,results/ChaIR目录的ots里面有权重,如下图:

使用best权重进行验证:
python main.py --data_dir SOTS/outdoor --test_model results/ChaIR/ots/Best.pkl
可以看到我训练的精度:

四、推理
因为ChaIR没有推理代码,所以自己写了一个推理代码进行推理,效果如下图:
| 原图 | 标签 | ChaIR推理结果(自己的权重) |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
本文提供训练好的模型和推理代码以及数据集,地址:图像去雾代码-SOTS划分好的8:2数据集-训练好的去雾权重-包含推理代码
相关文章:
【深度学习实践】基于深度学习的图像去雾算法-ChaIR-实践
本文介绍一个去雾算法ChaIR的使用方法,可以完成图像去雾,也可以用于图像去雨、去噪音等任务。本文不涉及论文原理,只包含源代码的跑通和使用。 先展示一下效果: 原图去雾 论文:Exploring the potential of channel …...
《乳腺密度高的女性中,使用AI辅助的乳腺X线筛查与补充筛查超声的比较研究》| 文献速递-基于深度学习的乳房、前列腺疾病诊断系统
Title 题目 Screening Outcomes of Mammography with AI in Dense Breasts: A Comparative Study with Supplemental Screening US 《乳腺密度高的女性中,使用AI辅助的乳腺X线筛查与补充筛查超声的比较研究》 Background 背景 Comparative performance between…...
crm 销售管理系统有哪些?国内外排名前十盘点
本文深入对比的 crm销售管理系统有:1.纷享销客; 2.Zoho CRM; 3.销售易; 4.有赞CRM; 5.Salesforce; 6.HubSpot; 7.简道云CRM; 8.爱客CRM; 9.Apptivo。 如果你正寻找一种方…...
package-lock.json 要提交到git吗?
之前一直没有提交package-lock.json文件到git仓库,直到我打包失败了。。。 我才知道package-lock.json需要提交到git仓库。 npm官网建议将package-lock.json一起提交到代码库中,不要忽略它。 package-lock.json的主要作用是锁定dependencies的版…...
算法学习day32
一、解码方法II(解码方法I的升级版) 在I的基础上增加了*,可以代替1-9中任意一个数字,求解码的方法有多少种 输入:s "*" 输出:9 解释:这一条编码消息可以表示 "1"、"…...
知识与智慧
前两天在medium上看到一篇文章,探讨知识(knowledge)和智慧(wisdom)之间的区别,很受启发,结合自己的经历和理解,形成此文: 何为知识 知识通常指的是信息的积累和对特定领…...
使用FFmpeg实现摄像头RTMP实时推流
在当今的数字时代,视频直播已成为连接人与人之间的重要桥梁,广泛应用于在线教育、远程会议、娱乐直播等多个领域。随着技术的不断进步,人们对于直播的实时性、稳定性和高质量需求日益增加。为了实现高效的视频直播,选择合适的工具和协议至关重要。 RTMP(Real-Time Messagi…...
使用 LabVIEW 编程更改 IMAQ/IMAQdx 接口的相机文件
问题详情 可能需要通过编程方式更改与 IMAQ/IMAQdx 接口关联的相机文件。这种需求通常发生在图像采集系统中,例如使用 PCIe-1433 硬件时,可能需要动态切换不同的相机配置文件来适应不同的应用场景。 解决方案 当前在 Measurement & Automation Ex…...
[后端代码审计] PHP 基础学习
文章目录 前言1. 基础语法1 .1 注释1 .2 分隔符 2. 变量与常量2 .1 变量2 . 1 .1 变量定义2 . 1 .2 变量释放 2 .2 常量2 . 2 .1 常量定义2 . 2 .2 预定义常量 3. 运算符3. 1 算数运算符3 .2 字符串运算符3 .3 赋值运算符3 .4 比较运算符3 .5 逻辑运算符3 .6 其他运算符 4. 流程…...
【OpenCV C++20 学习笔记】直方图计算-split, calcHist, normalize
直方图计算-split, calcHist, normalize 广义直方图示例目标分离通道计算直方图绘制计算结果归一化绘制 最终结果 广义直方图 直方图的横坐标除了可以是图片中的强度值,也可以是任何其他我们想要观察的特征。例如,下面的图片矩阵中包含了0-255的强度值&…...
js入门经典学习小结
简介 js是解释型语言,虽然名字有java,但和java,c等编译型语言不同,它是解释型的,类似perl,py 历史 90年代最早js 1.0版本是网景navigator2引入的 然后欧洲计算机制造商协会(ECMA)…...
nps内网穿透之——腾讯云服务器和linux虚拟机
准备 1、客户端:准备一个内网的linux内网主机,或是一个虚拟机。 2、服务端:准备一个云服务器(阿里、腾讯、华为都行)。 安装方式: 1、自己到Github官网下载安装包上传。 下载地址:https://…...
大数据知识点
VMWare 设置网段 虚拟机设置 JDK部署 云平台 创建VPC 找到阿里云控制台里的VPC,点击专有网络 安全组 搁置…有需要再使用,因为每月要花200左右 大数据 数据导论...
【计算机毕设项目】2025级计算机专业项目推荐 (前后端Web项目)
以下项目选题适合计算机专业大部分专业,技术栈主要为:Java语言,SSMVue框架,MySQL数据库 后台免费获取源码,可提供远程调试、环境安装配置服务(文末有联系方式) 以下是本次部分项目推荐1-end&a…...
【MySQL】2.MySQL实际操作
目录 一、数据分析基本流程 注:Navicat快捷键 二、获取数据后的代码操作 (1)探索数据,查看定义 (2)筛选有用的字段 (3)建新表(查询建表插值 三合一) 注意…...
Winform画圆以及无边框窗体的移动
普通圆 在WinForms中绘制一个圆形,可以通过几种方式实现: 1. 使用ControlPaint类 在窗体的Paint事件中使用ControlPaint.DrawCircle方法来绘制圆形。 private void Form1_Paint(object sender, PaintEventArgs e) {int x 100; // 圆心的X坐标int y …...
如何高效记录并整理编程学习笔记?
高效记录并整理编程学习笔记是提升编程学习效率和效果的重要方法。以下是一些具体的步骤、工具及其使用方法的介绍: 一、高效记录笔记的方法 专注理解:在记录笔记时,首先要保持高度的专注,努力理解老师或教程中讲解的知识点。避免…...
docker的安装和常用命令
docker的安装和常用命令 安装老版本新版本 镜像源配置常用命令基本命令清理文件复制构建镜像上传镜像 补充权限不足无目录权限无用户权限 容器访问jenkins推送镜像失败修改主机名编写Dockerfile 注:这里的安装是针对于cetnos7。 安装 老版本 安装老版本可能遇到报…...
haproxy 7000字配图超详细教程 从小白到入门
简介:HAProxy是一个免费的负载均衡软件,可以运行于大部分主流的Linux操作系统上。HAProxy提供了L4(TCP)和L7(HTTP)两种负载均衡能力,具备丰富的功能。HAProxy的社区非常活跃,版本更新快速,HAProxy具备媲美商用负载均衡器的性能和稳…...
使用 LangChain 掌握检索增强生成 (RAG) 的终极指南:5、将自然语言问题转换为结构化查询
5. 查询构建 — Ragatouille 用户用自然语言提出问题并被路由到特定数据源(例如,向量存储、图形数据库等)后,该问题需要被转换为结构化查询,以便从选定的数据源检索信息(例如,文本到SQL、文本到…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...



























