bert-base-chinese模型的完整训练、推理和一些思考
前言
使用google-bert/bert-base-chinese
模型进行中文文本分类任务,使用THUCNews中文数据集进行训练,训练完成后,可以导出模型,进行预测。
项目详细介绍和数据下载
数据集下载地址
Github完整代码
现记录训练过程中的一些感悟
1、训练时遇到的两个核心参数warmup_steps
和weight_decay
代码片段如下
需要弄明白一些基础概念
epoch:指模型在训练过程中遍历完整个训练数据集一次。
step:指模型在训练过程中处理完一个batch的数据并完成一次梯度更新。
batch_size: 指在一次step中模型用于训练的数据量。
假设 训练数据集有 n 个样本,每个epoch的step计算方式
s t e p = n b a t c h _ s i z e step = \frac{n}{batch\_size} step=batch_sizen
训练过程的总步数为
s t e p s = s t e p × n u m _ t r a i n _ e p o c h s steps = step \times num\_train\_epochs steps=step×num_train_epochs
warmup_steps
:主要目的是为了平稳地提升学习率,让模型在训练初期不会因为太高的学习率而跳过或远离全局最优解。
常见做法是将其设置为总训练步数的5%到10%的值。
此训练过程中warmup steps下限的计算方式如下,训练数据18w
w a r m u p _ s t e p s = 180000 32 × 5 × 5 % = 1406 warmup\_steps = \frac{180000}{32} \times 5 \times 5\% = 1406 warmup_steps=32180000×5×5%=1406
减少 warmup_steps 可能会导致模型更快地达到较高的学习率,从而错过或远离全局最优解。
weight_decay
:是用于正则化模型权重的,实际上是 L2 正则化的一种形式
weight_decay的作用是在损失函数中添加一个惩罚项,该惩罚项与权重的平方成正比,这有助于抑制权重的大小,从而防止模型过拟合
weight_decay设置得过低,可能不足以防止过拟合;设置得过高,则可能导致模型欠拟合,即模型过于简单,无法很好地捕捉数据中的模式
2、通过tensorboard --logdir=./logs
可视化训练过程
训练过程截图如下:
2.1、训练阶段
可以明显的看到训练时的学习率先逐渐上升之后在下降,这是我们想要的趋势。训练的损失值逐步下降,这也是我们希望的。但是当我们在分析评估数据数据集的损失时,我们会发现此时模型应该是过拟合了。
2.2、推理阶段
随着训练过程的增加,模型在评估数据集上的损失也是逐步减少,当在step=11250时,评估数据集上的损失开始逐渐增加,而训练数据的损失还在减少,那么可以肯定模型已经过拟合了。
模型已经充分的挖掘训练数据集中的语义特征,过分的学习到数据中的一些细枝末节。从而在新数据集上的表现越来越差。这种在训练数据集上表现优秀,在评估或测试数据集上表现较差现象,即模型出现了过拟合。
3、模型混淆矩阵的分析
混淆矩阵结果如下
指标如下
Accuracy | 0.9434 |
---|---|
Precision | 0.9438 |
Recall | 0.9434 |
具体多分类任务指标和混淆矩阵分析参考这里非常详细。
4、如何解决模型过拟合的现象
【待更新】疯狂参数调节优化中…
相关文章:

bert-base-chinese模型的完整训练、推理和一些思考
前言 使用google-bert/bert-base-chinese模型进行中文文本分类任务,使用THUCNews中文数据集进行训练,训练完成后,可以导出模型,进行预测。 项目详细介绍和数据下载 数据集下载地址 Github完整代码 现记录训练过程中的一些感悟…...
JS基础5(JS的作用域和JS预解析)
JS的作用域 1. 全局作用域 全局作用域是在代码的任何地方都能访问到的最外层作用域。在浏览器环境下,全局作用域就是window对象,因此所有在全局作用域中声明的变量和函数都会成为window对象的属性和方法。 var globalVar "I am global"; …...
Doris 夺命 30 连问!(中)
导言 抱歉,作为从 S2 开始的骨灰级玩家看到 EDGUZI 官宣首发上线,兴奋之余忘了写文档 - -||,还望各位看官老爷见谅,这次错了,下次还敢 ^_^ 这是继上次的 30 问上篇的中篇,也是 10 个问题,有些…...

书生.浦江大模型实战训练营——(四)书生·浦语大模型全链路开源开放体系
最近在学习书生.浦江大模型实战训练营,所有课程都免费,以关卡的形式学习,也比较有意思,提供免费的算力实战,真的很不错(无广)!欢迎大家一起学习,打开LLM探索大门…...

SpringBoot 整合 RabbitMQ 实现延迟消息
一、业务场景说明 用于解决用户下单以后,订单超时如何取消订单的问题。 用户进行下单操作(会有锁定商品库存、使用优惠券、积分一系列的操作);生成订单,获取订单的id;获取到设置的订单超时时间࿰…...

Cilium:基于开源 eBPF 的网络、安全性和可观察性
基于 eBPF 的网络、安全性和可观察性 Cilium 是一种开源的云原生解决方案,它利用 Linux 内核中的 eBPF 技术来提供、保护和监控工作负载之间的网络连接。 什么是 eBPF? eBPF 是一项源自 Linux 内核的技术,允许沙盒程序在特权上下文&#x…...
Axios 详解与使用指南
Axios 详解与使用指南 1. Axios 简介 Axios 是一个基于 Promise 的 HTTP 客户端,能够在浏览器和 Node.js 环境中运行。它提供了一种简便的方式来执行 HTTP 请求,并支持多种请求方法,如 GET、POST、PUT、DELETE 等。Axios 的配置灵活&#x…...

深度学习 —— 个人学习笔记20(转置卷积、全卷积网络)
声明 本文章为个人学习使用,版面观感若有不适请谅解,文中知识仅代表个人观点,若出现错误,欢迎各位批评指正。 三十九、转置卷积 import torch from torch import nndef trans_conv(X, K):h, w K.shapeY torch.zeros((X.shape[…...
解决Mac系统Python3.12版本pip安装报错error: externally-managed-environment的问题
遇到的问题 在Mac安装了Python3.12.x版本(3.12.3、3.12.4)后,当尝试pip3 install xxx的时候,总是报错:error: externally-managed-environment error: externally-managed-environment This environment is external…...

lvm知识终结
、什么是 LVM LVM 是 Linux 下对磁盘分区进行管理的一种工具,适合管理大存储设备,并允许用户动态调整文件系统的大小 lvm 常用的命令 功能 PV 管理命令 VG 管理命令 LV 管理命令 scan 扫描 pvscan vgscan lvscan create 创建 pvcreate v…...

ESP32S3 IDF 对 16路输入输出芯片MCP23017做了个简单的测试
这次还是使用了idf老版本4.4.7,上次用了5.3,感觉不好用,官方的MCP23017芯片是英文版,真的很难读明白,可能是我英语水平不够吧。先看看每个寄存器的功能: IODIRA 和 IODIRB: 输入/输出方向寄存器 IPOLA 和 I…...
【技术前沿】Flux.1部署教程入门--Stable Diffusion团队最前沿、免费的开源AI图像生成器
项目简介 FLUX.1 是一种新的开源图像生成模型。它由 Stable Diffusion 背后的团队 Black Forest Labs 开发。 官网中有以下功能开源供大家参考: FLUX.1 擅长在图像中准确再现文字,因此非常适合需要清晰文字或短语的设计。无论是标牌、书籍封面还是品牌…...
Redis 的 STREAM 和 RocketMQ 是两种不同的消息队列和流处理解决方案,它们在设计理念、功能和用途上有显著区别。以下是它们的主要区别:
20240813 Redis 的 STREAM 和 RocketMQ 是两种不同的消息队列和流处理解决方案,它们在设计理念、功能和用途上有显著区别。以下是它们的主要区别:1. 使用 Redis 的 Sorted Set 数据结构连接到 Redis示例用法添加事件获取滑动窗口内的事件移除过期事件连接…...
Visual Studio Code安装与C/C++语言运行(上)
Visual Studio Code(VS Code)作为微软开发的一款轻量级但功能强大的源代码编辑器,广泛应用于各种编程语言的开发,包括C/C。以下将详细介绍VS Code的安装过程以及与C/C语言运行环境的配置。 一、Visual Studio Code的安装 1. 准备…...

探索数据可视化,数据看板在各行业中的应用
数据可视化是一种通过图形化手段将数据呈现出来的技术,它将复杂的数据和信息转化为易于理解的图表、地图、仪表盘等视觉元素,使得数据的模式、趋势和关系更加直观地展现出来。通过数据可视化,用户可以快速识别重要信息、发现潜在问题…...

haralyzer 半自动,一次性少量数据采集快捷方法
使用场景:半自动,一次性少量数据采集需求在工作中还是不少遇到的,无论使用模拟的方式,或者破解都不太划算。其实这种需求,使用半自动爬虫是最简单的。不需要考虑网站反爬虫的问题,因为你使用的就是真实的浏…...
mall-admin-web-master前端项目下载依赖失败解决
碰壁后的总结 pythone 环境 2.XX版本,切记不要3.0以上的。node 16.x不能太高 错误案例 npm ERR! code 1 npm ERR! path D:\workspace\springBootMall\mall-admin-web-master\node_modules\node-sass npm ERR! command failed npm ERR! command C:\windows\system…...
【07】JVM是怎么实现invokedynamic的
在Java中,方法调用会被编译为invokeStatic,invokeSpecial,invokVirtual以及invokeInterface四种指令。这些指令与包含目标方法类名、方法名以及方法描述符的符号引用捆绑,在实际运行之前,JVM根据这个符号引用链接到具体…...

使用API有效率地管理Dynadot域名,查看参与的拍卖列表
前言 Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。 Dynadot平台操作教程索引(包括域名邮箱&…...

Linux 基本指令讲解
linux 基本指令 clear 清屏 Alt Enter 全屏/退出全屏 pwd 显示当前用户所处路径 cd 改变目录 cd /root/mikecd … 返回上级目录cd - 返回最近所处的路径cd ~ 直接返回当前用户自己的家目 roor 中:/root普通用户中:/home/mike mkdir 创建一个文件夹(d) …...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...