面试问了解Linux内存管理吗?10张图给你安排的明明白白
linux内存管理,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础,这就像武侠中的内功修炼,学完之后看不到立竿见影的效果,但对你日后的开发工作是大有裨益的,因为你站的更高了。
再功利点的说,面试的时候不经意间透露你懂这方面知识,并且能说出个一二三来,也许能让面试官对你更有兴趣,离升职加薪,走上人生巅峰又近了一步。
虚拟地址
即使是现代操作系统中,内存依然是计算机中很宝贵的资源,看看你电脑几个T固态硬盘,再看看内存大小就知道了。为了充分利用和管理系统内存资源,Linux采用虚拟内存管理技术,利用虚拟内存技术让每个进程都有4GB 互不干涉的虚拟地址空间。
进程初始化分配和操作的都是基于这个「虚拟地址」,只有当进程需要实际访问内存资源的时候才会建立虚拟地址和物理地址的映射,调入物理内存页。
打个不是很恰当的比方。这个原理其实和现在的某某网盘一样,假如你的网盘空间是1TB,真以为就一口气给了你这么大空间吗?那还是太年轻,都是在你往里面放东西的时候才给你分配空间,你放多少就分多少实际空间给你,但你和你朋友看起来就像大家都拥有1TB空间一样。
虚拟地址的好处
- 避免用户直接访问物理内存地址,防止一些破坏性操作,保护操作系统
- 每个进程都被分配了4GB的虚拟内存,用户程序可使用比实际物理内存更大的地址空间
4GB 的进程虚拟地址空间被分成两部分:「用户空间」和「内核空间」

物理地址
上面章节我们已经知道不管是用户空间还是内核空间,使用的地址都是虚拟地址,当需进程要实际访问内存的时候,会由内核的「请求分页机制」产生「缺页异常」调入物理内存页。
把虚拟地址转换成内存的物理地址,这中间涉及利用MMU 内存管理单元(Memory Management Unit ) 对虚拟地址分段和分页(段页式)地址转换,关于分段和分页的具体流程,这里不再赘述,可以参考任何一本计算机组成原理教材描述。

Linux 内核会将物理内存分为3个管理区,分别是:
ZONE_DMA
DMA内存区域。包含0MB~16MB之间的内存页框,可以由老式基于ISA的设备通过DMA使用,直接映射到内核的地址空间。
ZONE_NORMAL
普通内存区域。包含16MB~896MB之间的内存页框,常规页框,直接映射到内核的地址空间。
ZONE_HIGHMEM
高端内存区域。包含896MB以上的内存页框,不进行直接映射,可以通过永久映射和临时映射进行这部分内存页框的访问。

相关视频推荐
linux内核内存管理,操作系统底层原理,全程干货,内功修练的必备技能
【C++开发】庞杂的内存问题,如何理出自己的思路出来,让你开发与面试双丰收
90分钟搞懂linux内存架构,numa的优势,slab的实现,vmalloc的原理
免费学习地址:c/c++ linux服务器开发/后台架构师
需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

用户空间
用户进程能访问的是「用户空间」,每个进程都有自己独立的用户空间,虚拟地址范围从从 0x00000000 至 0xBFFFFFFF 总容量3G 。
用户进程通常只能访问用户空间的虚拟地址,只有在执行内陷操作或系统调用时才能访问内核空间。
进程与内存
进程(执行的程序)占用的用户空间按照「 访问属性一致的地址空间存放在一起 」的原则,划分成 5个不同的内存区域。 访问属性指的是“可读、可写、可执行等 。
- 代码段 代码段是用来存放可执行文件的操作指令,可执行程序在内存中的镜像。代码段需要防止在运行时被非法修改,所以只准许读取操作,它是不可写的。
- 数据段 数据段用来存放可执行文件中已初始化全局变量,换句话说就是存放程序静态分配的变量和全局变量。
- BSS段 BSS段包含了程序中未初始化的全局变量,在内存中 bss 段全部置零。
- 堆 heap 堆是用于存放进程运行中被动态分配的内存段,它的大小并不固定,可动态扩张或缩减。当进程调用malloc等函数分配内存时,新分配的内存就被动态添加到堆上(堆被扩张);当利用free等函数释放内存时,被释放的内存从堆中被剔除(堆被缩减)
- 栈 stack 栈是用户存放程序临时创建的局部变量,也就是函数中定义的变量(但不包括 static 声明的变量,static意味着在数据段中存放变量)。除此以外,在函数被调用时,其参数也会被压入发起调用的进程栈中,并且待到调用结束后,函数的返回值也会被存放回栈中。由于栈的先进先出特点,所以栈特别方便用来保存/恢复调用现场。从这个意义上讲,我们可以把堆栈看成一个寄存、交换临时数据的内存区。
上述几种内存区域中数据段、BSS 段、堆通常是被连续存储在内存中,在位置上是连续的,而代码段和栈往往会被独立存放。堆和栈两个区域在 i386 体系结构中栈向下扩展、堆向上扩展,相对而生。

你也可以再linux下用size命令查看编译后程序的各个内存区域大小:
[lemon ~]# size /usr/local/sbin/sshdtext data bss dec hex filename
1924532 12412 426896 2363840 2411c0 /usr/local/sbin/sshd
内核空间
在 x86 32 位系统里,Linux 内核地址空间是指虚拟地址从 0xC0000000 开始到 0xFFFFFFFF 为止的高端内存地址空间,总计 1G 的容量, 包括了内核镜像、物理页面表、驱动程序等运行在内核空间 。

直接映射区
直接映射区 Direct Memory Region:从内核空间起始地址开始,最大896M的内核空间地址区间,为直接内存映射区。
直接映射区的896MB的「线性地址」直接与「物理地址」的前896MB进行映射,也就是说线性地址和分配的物理地址都是连续的。内核地址空间的线性地址0xC0000001所对应的物理地址为0x00000001,它们之间相差一个偏移量PAGE_OFFSET = 0xC0000000
该区域的线性地址和物理地址存在线性转换关系「线性地址 = PAGE_OFFSET + 物理地址」也可以用 virt_to_phys()函数将内核虚拟空间中的线性地址转化为物理地址。
高端内存线性地址空间
内核空间线性地址从 896M 到 1G 的区间,容量 128MB 的地址区间是高端内存线性地址空间,为什么叫高端内存线性地址空间?下面给你解释一下:
前面已经说过,内核空间的总大小 1GB,从内核空间起始地址开始的 896MB 的线性地址可以直接映射到物理地址大小为 896MB 的地址区间。退一万步,即使内核空间的1GB线性地址都映射到物理地址,那也最多只能寻址 1GB 大小的物理内存地址范围。
请问你现在你家的内存条多大?一般 PC 的内存都大于 1GB 了吧!
所以,内核空间拿出了最后的 128M 地址区间,划分成下面三个高端内存映射区,以达到对整个物理地址范围的寻址。而在 64 位的系统上就不存在这样的问题了,因为可用的线性地址空间远大于可安装的内存。
动态内存映射区
vmalloc Region 该区域由内核函数vmalloc来分配,特点是:线性空间连续,但是对应的物理地址空间不一定连续。 vmalloc 分配的线性地址所对应的物理页可能处于低端内存,也可能处于高端内存。
永久内存映射区
Persistent Kernel Mapping Region 该区域可访问高端内存。访问方法是使用 alloc_page (_GFP_HIGHMEM) 分配高端内存页或者使用kmap函数将分配到的高端内存映射到该区域。
固定映射区
Fixing kernel Mapping Region 该区域和 4G 的顶端只有 4k 的隔离带,其每个地址项都服务于特定的用途,如 ACPI_BASE等。

回顾一下
上面讲的有点多,先别着急进入下一节,在这之前我们再来回顾一下上面所讲的内容。如果认真看完上面的章节,我这里再画了一张图,现在你的脑海中应该有这样一个内存管理的全局图。

内存数据结构
要让内核管理系统中的虚拟内存,必然要从中抽象出内存管理数据结构,内存管理操作如「分配、释放等」都基于这些数据结构操作,这里列举两个管理虚拟内存区域的数据结构。
用户空间内存数据结构
在前面「进程与内存」章节我们提到,Linux进程可以划分为 5 个不同的内存区域,分别是:代码段、数据段、BSS、堆、栈,内核管理这些区域的方式是,将这些内存区域抽象成vm_area_struct的内存管理对象。
vm_area_struct是描述进程地址空间的基本管理单元,一个进程往往需要多个vm_area_struct来描述它的用户空间虚拟地址,需要使用「链表」和「红黑树」来组织各个vm_area_struct。
链表用于需要遍历全部节点的时候用,而红黑树适用于在地址空间中定位特定内存区域。内核为了内存区域上的各种不同操作都能获得高性能,所以同时使用了这两种数据结构。
用户空间进程的地址管理模型:

内核空间动态分配内存数据结构
在内核空间章节我们提到过「动态内存映射区」,该区域由内核函数vmalloc来分配,特点是:线性空间连续,但是对应的物理地址空间不一定连续。 vmalloc 分配的线性地址所对应的物理页可能处于低端内存,也可能处于高端内存。
vmalloc 分配的地址则限于vmalloc_start与vmalloc_end之间。每一块vmalloc分配的内核虚拟内存都对应一个vm_struct结构体,不同的内核空间虚拟地址之间有4k大小的防越界空闲区间隔区。与用户空间的虚拟地址特性一样,这些虚拟地址与物理内存没有简单的映射关系,必须通过内核页表才可转换为物理地址或物理页,它们有可能尚未被映射,当发生缺页时才真正分配物理页面。

总结一下
Linux内存管理是一个非常复杂的系统,本文所述只是冰山一角,从宏观角度给你展现内存管理的全貌,这些知识在你和面试官聊天的时候还是够用的,当然希望大家能够了解更深层次的原理。
这篇文章也可以作为一个索引一样的学习指南,当你想深入某一点学习的时候可以在这些章节里找到切入点,以及这个知识点在内存管理宏观上的位置。
相关文章:
面试问了解Linux内存管理吗?10张图给你安排的明明白白
linux内存管理,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础,这就像武侠中的内功修炼,学完之后看不到立竿见影的效果,但对你日后的开发工…...
【C++】内联函数inline
文章目录概念使用特性原理概念 C中内联函数的出现解决了C语言宏函数的不足,类似于宏展开,这种在函数调用处直接嵌入函数体的函数称为内联函数,又称内嵌函数或内置函数。 以inline修饰的函数叫做内联函数,编译时C编译器会在调用内…...
C++演讲比赛流程管理系统_黑马
任务 学校演讲比赛,12人,两轮,第一轮淘汰赛,第二轮决赛 选手编号 [ 10001 - 10012 ] 分组比赛 每组6人 10个评委 去除最高分 最低分,求平均分 为该轮成绩 每组淘汰后三名,前三名晋级决赛 决赛 前三名胜出 …...
谈谈低代码的安全问题,一文全给你解决喽
低代码是一种软件开发方法,通过使用图形化用户界面和可视化建模工具,以及自动生成代码的技术,使得开发人员可以更快速地构建和发布应用程序。 作为近些年软件开发市场热门之一,市面上也涌现了许多低代码产品,诸如简道云…...
[数据结构]二叉树OJ(leetcode)
目录 二叉树OJ(leetcode)训练习题:: 1.单值二叉树 2.检查两棵树是否相同 3.二叉树的前序遍历 4.另一棵树的子树 5.二叉树的构建及遍历 6.二叉树的销毁 7.判断二叉树是否是完全二叉树 二叉树OJ(leetcode)训练习题:: 1.单值二叉…...
flutter 输入时插入分隔符
每四位插入一个分隔符import package:flutter/services.dart;class DividerInputFormatter extends TextInputFormatter {final int rear; //第一个分割位数,后面分割位,,数final String pattern; //分割符DividerInputFormatter({this.rear 4, this.pattern });overrideTex…...
静态版通讯录——“C”
各位CSDN的uu你们好呀,之前小雅兰学过了一些结构体、枚举、联合的知识,现在,小雅兰把这些知识实践一下,那么,就让我们进入通讯录的世界吧 实现一个通讯录: 可以存放100个人的信息每个人的信息:名…...
前端基础开发环境搭建工具等
一、基本开发环境(软件)安装1、Vscode(代码编辑器)官网下载网址:https://code.visualstudio.com/2、nvm(node多版本管理器,每个node版本都有对应的npm版本)安装包下载地址࿱…...
华为OD机试题【IPv4 地址转换成整数】用 Java 解 | 含解题说明
华为Od必看系列 华为OD机试 全流程解析+经验分享,题型分享,防作弊指南华为od机试,独家整理 已参加机试人员的实战技巧华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典本篇题目:IPv4 地址转换成整数 题目 存在…...
[数据结构]排序算法
目录 常用排序算法的实现:: 1.排序的概念及其运用 2.插入排序 3.希尔排序 4.选择排序 5.冒泡排序 6.堆排序 7.快速排序 8.归并排序 9.排序算法复杂度及稳定性分析 10.排序选择题练习 常用排序算法的实现:: 1.排序的概念及其运用…...
不愧是2023年就业最难的一年,还好有车企顶着~
就业龙卷风已经来临,以前都说找不到好的工作就去送外卖,但如今外卖骑手行业都已经接近饱和状态了,而且骑手们的学历也不低,本科学历都快达到了30%了,今年可以说是最难找到工作的一年。 像Android 开发行业原本就属于在…...
C/C++之while(do-while)详细讲解
目录 while循环有两个重要组成部分: while 是一个预测试循环 无限循环 do-while 循环 while循环有两个重要组成部分: 进行 true 值或 false 值判断的表达式;只要表达式为 true 就重复执行的语句或块;图 1 显示了 while 循环的…...
SpringCloud学习笔记(一)认识微服务
一、微服务技术栈 二、单体架构和分布式架构的区别 1、单体架构: 将业务的所有功能集中在一个项目中开发,打成一个包进行部署 优点:架构简单,部署成本低缺点:耦合度高 2、分布式架构: 根据业务功能对系统…...
Unity中使用WebSocket (ws://)的方法
WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。在WebSocket API中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。 WebSocket与http 其…...
米哈游春招算法岗-2023.03.19-第一题-交换字符-简单题
交换字符Problem Description 米小游拿到了一个仅由小写字母组成的字符串,她准备进行恰好一次操作:交换两个相邻字母,在操作结束后使得字符串的字典序尽可能大。 请你输出最终生成的字符串。 input 一个仅由小写字母组成的字符串,…...
能把爬虫讲的这么透彻的,没有20年功夫还真不行【0基础也能看懂】
前言 可以说很多人学编程,不玩点爬虫确实少了很多意思,不管是业余、接私活还是职业爬虫,爬虫世界确实挺精彩的。 今天来给大家浅谈一下爬虫,目的是让准备学爬虫或者刚开始起步的小伙伴们,对爬虫有一个更深更全的认知…...
springcloud学习总结
springcloud 构建微服务项目步骤 导入依赖编写配置文件开启这个功能 Enablexxx配置类 于2023年2月24日下午17点38分开始学习于2023年3月17日晚上20点26分学完总结代码地址:https://gitee.com/liang-weihao/StudySpringcloud学习笔记地址:https://www.…...
2022年亏损超10亿,告别野蛮成长的众安在线急需新“引擎”
2023年3月21日,众安在线披露了2022年财报,营收233.52亿元,同比增长6.44%;净亏损16.33亿元,去年同期净利润为11.6亿元,同比由盈转亏。 尽管众安在线再次身陷亏损的泥潭,但投资者却没有选择逃离。…...
ChatGPT文心一言逻辑大比拼(一)
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
【机器学习面试总结】————特征工程
【机器学习面试总结】————特征工程一、特征归一化为什么需要对数值类型的特征做归一化?二、类别型特征在对数据进行预处理时,应该怎样处理类别型特征?三、高维组合特征的处理什么是组合特征?如何处理高维组合特征?四、组合特征怎样有效地找到组合特征?五、文本表示模型…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
