调用yolov3模型进行目标检测
要调用已经训练好的YOLOv3模型对图片进行检测,需要完成以下几个步骤:
- 加载预训练模型:从预训练的权重文件中加载模型。
- 准备输入图片:将图片转换为模型所需的格式。
- 进行推理:使用模型对图片进行推理,得到检测结果。
- 处理输出结果:解析模型的输出,得到检测框、类别和置信度。
以下是一个使用PyTorch和OpenCV的示例代码,展示如何调用已经训练好的YOLOv3模型对图片进行检测:
1. 安装必要的库
确保已经安装了以下库:
pip install torch torchvision opencv-python
2. 加载预训练模型
假设已经有一个预训练的YOLOv3模型权重文件 yolov3.weights 和对应的配置文件 yolov3.cfg。
import torch
import cv2
import numpy as np# 加载预训练模型
model = cv2.dnn.readNetFromDarknet("yolov3.cfg", "yolov3.weights")
model.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
model.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
3. 准备输入图片
读取图片并将其转换为模型所需的格式。
# 读取图片
image = cv2.imread("test.jpg")
blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)
model.setInput(blob)
4. 进行推理
使用模型对图片进行推理,得到检测结果。
# 获取输出层的名称
layer_names = model.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in model.getUnconnectedOutLayers()]# 进行推理
outputs = model.forward(output_layers)
5. 处理输出结果
解析模型的输出,得到检测框、类别和置信度,并绘制检测结果。
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4# 解析输出
for output in outputs:for detection in output:scores = detection[5:]class_id = np.argmax(scores)confidence = scores[class_id]if confidence > conf_threshold:center_x = int(detection[0] * image.shape[1])center_y = int(detection[1] * image.shape[0])width = int(detection[2] * image.shape[1])height = int(detection[3] * image.shape[0])left = int(center_x - width / 2)top = int(center_y - height / 2)class_ids.append(class_id)confidences.append(float(confidence))boxes.append([left, top, width, height])# 非极大值抑制
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)# 绘制检测结果
for i in indices:i = i[0]box = boxes[i]left = box[0]top = box[1]width = box[2]height = box[3]cv2.rectangle(image, (left, top), (left + width, top + height), (0, 255, 0), 2)label = f"{class_ids[i]} {confidences[i]:.2f}"cv2.putText(image, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 显示结果图片
cv2.imshow("Detection", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关文章:
调用yolov3模型进行目标检测
要调用已经训练好的YOLOv3模型对图片进行检测,需要完成以下几个步骤: 加载预训练模型:从预训练的权重文件中加载模型。准备输入图片:将图片转换为模型所需的格式。进行推理:使用模型对图片进行推理,得到检…...
linux文件——重定向原理——dup、重定向与execl、VFS
前言:本篇讲解linux下的重定向相关内容。 在本篇中, 博主将会带着友友们一边实验, 一边探索底层原理。 通过本篇的学习, 友友们将会了解到重定向是如何实现的, 重定向的本质是什么, 重定向和进程替换之间的…...
【STM32 FreeRTOS】任务
使用 RTOS 的实时应用程序可以被构建为一组独立的任务。每个任务在自己的上下文中执行,不依赖于系统内的其他任务或 RTOS 调度器本身。在任何时间点,应用程序中只能执行一个任务,实时 RTOS 调度器负责决定所要执行的任务。因此, R…...
Java面试--框架--Spring MVC
Spring MVC 目录 Spring MVC1.spring mvc简介2.spring mvc实现原理2.1核心组件2.2工作流程 3.RESTful 风格4.Cookie,Session4.1 会话4.2 保存会话的两种技术 5.拦截器5.1过滤器、监听器、拦截器的对比5.2 过滤器的实现5.3 拦截器基本概念5.4 拦截器的实现 1.spring …...
土壤水分监测系统的工作原理
TH-TS200土壤水分监测系统是一种在地球科学、农学等领域广泛应用的分析仪器,它主要用于监测土壤中的水分含量,为农业生产、水资源管理、环境保护等提供重要数据支持。通常包括数据采集器、土壤水分传感器、土壤温度传感器(部分系统配备)、计算机软件以及…...
k8s学习--如何控制pod调度的位置
文章目录 一、Pod 调度基础二、通过节点选择器 (Node Selector) 控制调度三、使用节点亲和性 (Node Affinity)四、使用污点和容忍 (Taints and Tolerations)五、Pod 反亲和性 (Pod Anti-Affinity) 总结 在 Kubernetes (K8s)中,Pod 是应用运行的最小单位࿰…...
基于mysqldump的MySQL数据库异地备份方案(含完整脚本和解释)
MySQL数据库异地备份方案 0 文档描述 本文描述了一个数据库异地备份方案,以下脚本代码都是在线上应用的本文以CentOS7为例,其他系统请自行查询安装命令如果评论有需求,我就对应系统做一下文档 1 基本原理 1.1 流程 原理本身很简单&#…...
C语言中10个字符串函数详解
目录 1.strlen 2.strcpy 3.strcat 4.strcmp 5.strncpy 6.strncat 7.strncmp 8.strstr 9.strtok 10.strerror 1.strlen 基本结构:size_t strlen(const char *str);功能:用于计算字符串的长度;字符串已经 0作为结束标志…...
flume系列之:查询多个flume agent组是否有topic重复接入情况
flume系列之:查询多个flume agent组是否有topic重复接入情况 一、查询zk节点下的flume agent组二、获取采集的topic三、获取重复接入的topic,支持设置重复接入白名单四、执行流程五、完整代码一、查询zk节点下的flume agent组 def get_flumeAgent_zkPath(zkRootPaths):for z…...
Windows自动化1️⃣环境搭建WinAppDriver
对于技术选型: 我尝试了, pywinauto, WinAppDriver,CukeTest 担心CukeTest可能会收费, 尝试pywinauto,在元素点击,搜索时, 遇到不可用情况; WinAppDriver是微软家的,大厂开源, 就它了! 步骤一:安装WinAppDriver 进入WinAppDriver下载页面(https://githu…...
云服务器Docker内部署服务后,端口无法访问?
云服务器Docker内部署服务后,端口无法访问,可以按照以下思路进行排查: 以【docker run --name my-nginx -d -p 9395:80 nginx】举例: 查看Docker映射是否正确,可使用docker ps命令查看。Docker是否设置端口映射&#…...
Unity将摄像机视角保存成Json文件方便读取使用
系列文章目录 unity工具 文章目录 系列文章目录👉前言👉一、设置环境👉二、代码如下👉三、使用方法 👉四、下次外部调用json里面的摄像机位置的时候如下代码方法👉壁纸分享👉总结 👉…...
git是什么/基本指令
git作用 去中心化, 分布式版本控制器 新增术语:仓库区, 工作区, 暂存区 具体见下板书 常用git命令 git clone 仓库网址 git status 查看仓库状态 git add newfile 临时添加到git仓库 git commit -m 正式添加git仓库 g…...
Linux 中的同步机制
代码基于:Kernel 6.6 临界资源:指哪些在同一时刻只允许被一个线程访问的软件或硬件资源。这种资源的特点是,如果有线程正在使用,其他进程必须等待直到该线程释放资源。 临界区:指在每个线程中访问临界资源的那段代码。…...
Day17 枚举、typedef、位运算、堆空间的学习
目录 枚举 typedef 位运算 堆上的空间 枚举 一个一个列举出来,是指将变量的值一一列举出来,变量的值只限于列举出来的值的范围内。 作用: 1、为了提高代码的可读性 2、提高代码的安全性 枚举类型 基本语法: enum 枚举名 { …...
Python爬虫与数据分析:中国大学排名的深度挖掘
前言 👉 小编已经为大家准备好了完整的代码和完整的Python学习资料,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取【保证100%免费】 一、选题背景 高考作为中国学生生涯中最为重要的事,在高考之后,选择一所…...
微软开源库 Detours 详细介绍与使用实例分享
目录 1、Detours概述 2、Detours功能特性 3、Detours工作原理 4、Detours应用场景 5、Detours兼容性 6、Detours具体使用方法 7、Detours使用实例 - 使用Detours拦截系统库中的UnhandledExceptionFilter接口,实现对程序异常的拦截 C软件异常排查从入门到精通…...
js中的getElementById的使用方法
在JavaScript中,document.getElementById()是一种用于通过元素的id属性获取DOM元素的方法。它的作用是返回与指定id匹配的HTML元素。 使用document.getElementById()可以通过元素的id属性直接获取该元素的引用,然后可以使用该引用对元素进行各种操作。例…...
设计模式 - 桥接模式
💝💝💝首先,欢迎各位来到我的博客!本文深入理解设计模式原理、应用技巧、强调实战操作,提供代码示例和解决方案,适合有一定编程基础并希望提升设计能力的开发者,帮助读者快速掌握并灵活运用设计模式。 💝💝💝如有需要请大家订阅我的专栏【设计模式】哟!我会定…...
LeetCode530 二叉搜索树的最小绝对差
前言 题目: 530. 二叉搜索树的最小绝对差 文档: 代码随想录——二叉搜索树的最小绝对差 编程语言: C 解题状态: 成功解决! 思路 注意题目中的二叉搜索树,这个条件暗示每个节点的左子节点肯定小于该节点&am…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
C++中vector类型的介绍和使用
文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…...
