C# 通过反射(Reflection)调用不同名泛型方法
在C#中,通过反射调用泛型方法时,如果方法的名称或参数类型有所不同,那么你需要根据具体的情况来构造合适的MethodInfo
对象。由于你提到的是调用“不同名”的泛型方法,这意味着你需要首先确定具体要调用的方法名,然后再处理泛型类型。
下面是一个示例,展示了如何通过反射调用具有不同名称的泛型方法。假设我们有一个类,该类包含两个泛型方法:GenericMethod1<T>()
和 GenericMethod2<T, U>()
。
定义示例类
public class MyGenericClass
{ public void GenericMethod1<T>() { Console.WriteLine($"Called GenericMethod1 with type {typeof(T).Name}"); } public void GenericMethod2<T, U>() { Console.WriteLine($"Called GenericMethod2 with types {typeof(T).Name} and {typeof(U).Name}"); }
}
通过反射调用方法
调用 GenericMethod1<T>()
public static void InvokeGenericMethod1()
{ var myClassInstance = new MyGenericClass(); var type = myClassInstance.GetType(); // 获取泛型方法信息,指定类型参数 var methodInfo = type.GetMethod("GenericMethod1"); var genericMethodInfo = methodInfo.MakeGenericMethod(typeof(int)); // 假设我们想传入int作为T // 调用方法 genericMethodInfo.Invoke(myClassInstance, null);
}
调用 GenericMethod2<T, U>()
public static void InvokeGenericMethod2()
{ var myClassInstance = new MyGenericClass(); var type = myClassInstance.GetType(); // 获取泛型方法信息,指定两个类型参数 var methodInfo = type.GetMethod("GenericMethod2"); var genericMethodInfo = methodInfo.MakeGenericMethod(typeof(string), typeof(double)); // 假设我们想传入string和double作为T和U // 调用方法 genericMethodInfo.Invoke(myClassInstance, null);
}
完整示例
using System;
using System.Reflection; class Program
{ static void Main(string[] args) { InvokeGenericMethod1(); InvokeGenericMethod2(); } // 之前的InvokeGenericMethod1和InvokeGenericMethod2方法
}
注意事项
- 确保方法名和类型参数完全匹配你尝试调用的方法。
- 如果方法重载(即存在多个同名但参数不同的方法),你需要确保
GetMethod
调用时能够正确区分这些方法。这通常通过参数类型数组来完成,但在使用泛型方法时,你通常在调用MakeGenericMethod
之前已经确定了具体的方法。 Invoke
方法用于执行MethodInfo
对象表示的方法。其第一个参数是目标实例(如果方法是实例方法的话),第二个参数是调用方法时传递给它的参数数组(在这个例子中我们没有传递任何参数,所以是null
)。
其他反射用法:C# 反射动态给属性赋值_c# 反射赋值-CSDN博客
相关文章:
C# 通过反射(Reflection)调用不同名泛型方法
在C#中,通过反射调用泛型方法时,如果方法的名称或参数类型有所不同,那么你需要根据具体的情况来构造合适的MethodInfo对象。由于你提到的是调用“不同名”的泛型方法,这意味着你需要首先确定具体要调用的方法名,然后再…...
Spring Boot整合Drools入门:实现订单积分规则
文章目录 项目结构Maven配置配置Drools订单实体类订单积分规则测试规则总结 在开发过程中,我们经常遇到需要根据业务规则来进行决策的场景。比如,电商平台可能需要根据订单金额为用户添加相应的积分。为了灵活地处理这些业务规则,我们可以借助…...

【C语言】文件操作函数详解
目录 C语言文件操作函数详解表格汇总1. fopen2. fclose3. fread4. fwrite5. fseek6. ftell7. rewind8. fprintf9. fscanf10. feof11. ferror12. clearerr13. 总结14. 附录:函数参考表15. 结束语相关文章: C语言文件操作函数详解 C语言提供了一组标准库函…...

Java 垃圾回收,看一遍就懂
了解 Java 垃圾收集的工作原理并优化应用程序中的内存使用情况。详细了解 Java 中内存管理的复杂性。 垃圾收集是一个关键过程,可以帮助任何Java 开发公司。编程语言中的这一强大功能可以巧妙地管理内存分配和释放,防止内存泄漏并优化资源利用率。它就像…...

手把手教你CNVD漏洞挖掘 + 资产收集
0x1 前言 挖掘CNVD漏洞有时候其实比一般的edusrc还好挖,但是一般要挖证书的话,还是需要花时间的,其中信息收集,公司资产确定等操作需要花费一定时间的。下面就记录下我之前跟一个师傅学习的一个垂直越权成功的CNVD漏洞通杀&#…...

华为云低代码AstroZero技巧教学1:表格的超链接赋能
在低代码AstroZero的标准页面设计和构建上,我们总是在思考如何让用户体验能够更加流畅。 为此,我们特推出低代码AstroZero技巧教学系列合集,让各位开发者能够更加方便快捷地掌握低代码AstroZero的操作技巧。 本次技巧内容: 在As…...

https握手过程详解
https握手过程详解 上一篇《HTTPS通讯全过程》中https握手过程实际上还有更多的细节,为什么会这样设计呢?是因为一开始将握手过程时,吧步骤说的太详细会导致更难理解惹。所以我就先在上一篇把部分细节忽略,把原来几步的过程先简化…...

Lesson 63 Thank you, doctor
Lesson 63 Thank you, doctor 词汇 better a. 更好的 搭配:feel better get better 感觉好些了 成语:Better late than never. 晚做总比不做好。 Half a loaf is better than no bread. 有比没有好。…...
使用python和matlab实现BP神经网络算法的分析比较
分析和比较使用Python和MATLAB实现BP神经网络算法实现的复杂度、代码可读性、库支持、性能以及应用的灵活性等。 1. BP神经网络的基本原理 BP神经网络(Back Propagation Neural Network)是一种多层前馈神经网络,通过反向传播算法来训练网络。其基本思想是利用梯度下降法,…...

智慧卫生间环境传感器有哪些?智慧卫生间的特点@卓振思众
随着科技的进步和人们对生活品质的要求不断提高,智慧卫生间作为现代化设施的代表,越来越受到关注。智慧卫生间不仅仅是在外观设计上做文章,更在于其背后强大的智能系统,特别是环境传感器的应用,让厕所的管理和使用变得…...

智能分班结果自动发布系统
新学期,校园里又将迎来一批充满活力的新生。对于老师们来说,除了准备教学计划和课程内容,还有一项看似简单却颇为繁琐的任务——发布分班。传统的分班信息发布方式,通常是老师们一个个私信给学生家长,家长们收到信息后…...
vue 后台管理 指定项目别名
越多越好 文章目录 一、指定项目路径别名二、全局loading进度条实现三、动态页面标题的实现四、全局刷新 和 全屏 一、指定项目路径别名 在 vite.config.js 里配置 import path from "path"export default defineConfig({resolve:{alias:{"~":path.resol…...

【Python机器学习】FP-growth算法——构建FP树
在第二次扫描数据集时会构建一棵FP树。为构建一棵树,需要一个容器来保存树。 创建FP树的数据结构 FP树要比书中其他树更加复杂,因此需要创建一个类来保存树的每一个节点: class treeNode:def __init__(self,nameValue,numOccur,parentNode…...

JAVA itextpdf 段落自动分页指定固定行距打印
JAVA itextpdf 段落自动分页指定固定行距打印 前言:公司有个需求,打印的合同模板左上角要加上logo的图标。但是itext pdf 自动分页会按照默认的顶部高分页打印内容的,导致从第二页开始logo图标就会把合同的内容给覆盖掉了。然后尝试了挺多方法…...

基于SpringBoot+Vue的周边游平台个人管理模块的设计与实现
TOC springboot220基于SpringBootVue的周边游平台个人管理模块的设计与实现 第一章 绪论 1.1 选题背景 目前整个社会发展的速度,严重依赖于互联网,如果没有了互联网的存在,市场可能会一蹶不振,严重影响经济的发展水平…...

开源数据库同步工具monstache
Monstache是一个用Go语言编写的同步工具,主要用于将MongoDB中的数据同步到Elasticsearch中。它支持全量同步和增量同步,并提供了丰富的配置参数以及使用Go、JavaScript编写插件来自定义处理数据的逻辑的能力。Monstache 工作流程如下图: 以下…...

Ubuntu连接GitHub
报错:Please make sure you have the correct access rights and the repository exists.原因:本地没有SSH Key存在解决: 首先为系统设置github的用户名和自己的邮箱 git config --global user.name "****" git config --global us…...
微信支付流程
1. 创建订单 请求创建订单的 API 接口:把 订单金额、收货地址、订单中包含的商品信息 发送到服务器服务器响应的结果:订单编号 2.订单预支付 请求订单预支付的 API 接口:把步骤1得到的 订单编号 发送到服务器服务器响应的结果:…...

LVS理论知识
目录 1.描述以及工作原理 1.什么是LVS 2.LVS调度算法 1.静态调度算法 1.轮询RR 2.加权轮询WRR 3.目标地址hash---DH 4.源地址hash---SH 2.动态调度算法 1.LC最少连接 2.wlc加权最少连接 3.sed最少期望延迟 4.nq不排队调度算法 5.lblc基于本地最少连接 6.lnlcr带…...

uniapp接口请求this.$request
代码示例: createPhoto(url) {this.$request({url: /emp/gallery-photo/create,//后端接口method: post,//请求方法header: {//请求头tenant-id: 1,},data: {//请求参数galleryId: this.albumId,empUserId: this.empUserId,"url": url,}}).then((res) &…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...