基于模糊神经网络的金融序列预测算法matlab仿真
目录
1.程序功能描述
2.测试软件版本以及运行结果展示
3.核心程序
4.本算法原理
5.完整程序
1.程序功能描述
基于模糊神经网络的金融序列预测算法matlab仿真,根据序列的MAD,RSI,KD等指标实现序列的预测和最终收益分析。
2.测试软件版本以及运行结果展示
MATLAB2022A版本运行




(完整程序运行后无水印)
3.核心程序
load B_idx.mat
%输入层
for i = 1:length(Price)
i
%MACD
MACDt{i} = Vmacd{1,i}.macd;
DIFt{i} = Vmacd{1,i}.dif;
DEAt{i} = Vmacd{1,i}.dea;
BARt{i} = Vmacd{1,i}.dif-Vmacd{1,i}.macd;
BARt1{i} = [0;BARt{i}(1:end-1)];
MACD_Trend{i} = [func_sma(MACDt{i},20)]';
P_Trend{i} = [func_sma(Price{i,1},20)]';%RSI
RSI6{i} = Vrsi{1,i}.rsi6;
RSI12{i} = Vrsi{1,i}.rsi12;
RSI6_12t{i} = RSI6{i}-RSI12{i};
RSI6_12t1{i} = [0;RSI6{i}(1:end-1)]-[0;RSI12{i}(1:end-1)];
RSI_Trend{i} = [func_sma(RSI6{i},20)]';%KD
D{i} = [Vkd{1,i}.D]';
K{i} = [Vkd{1,i}.K]';
KDt{i} = K{i}-D{i};
KDt1{i} = [0;K{i}(1:end-1)]-[0;D{i}(1:end-1)];
D_Trend{i} = [func_sma(D{i},20)]';
K_Trend{i} = [func_sma(K{i},20)]';
Ks{i} = [func_Ks(Price{i,1})]';endsave C_idx.mat
04_011m
4.本算法原理
基于模糊神经网络的金融序列预测算法是一种结合了模糊逻辑和神经网络技术的先进预测方法,它适用于处理非线性、不确定性和模糊性的金融数据预测任务。在金融序列预测中,常用的指标如移动平均收敛发散指标(MACD)、相对强弱指数(RSI)以及随机指标(KD)等,可以作为输入特征用于预测股票价格或其他金融序列的变化趋势。金融序列预测旨在利用历史数据预测未来市场走势,这对于投资者制定交易策略至关重要。传统的预测方法往往难以捕捉金融市场中的非线性关系和不确定性,而模糊神经网络因其独特的非线性映射能力和模糊逻辑处理能力,在处理这类问题上显示出优势。
模糊逻辑是处理不精确和不确定信息的一种有效方法。它通过模糊集合和隶属度函数来量化事物的模糊程度。模糊神经网络则是将模糊逻辑与神经网络相结合的一种技术,它能够自动学习输入与输出之间的复杂关系,并通过模糊推理来提高预测精度。模糊神经网络的基本结构通常包括输入层、模糊化层、规则层、规范化层和输出层。
输入层
输入层接收来自外部的数据,这些数据可以是金融序列的原始数据或者是经过预处理的特征数据。在金融序列预测中,常用的特征包括开盘价、收盘价、最高价、最低价等,还可以加入技术分析指标如MACD、RSI、KD等。
模糊化层
模糊化层负责将输入数据转换成模糊集合。假设我们有一个输入x,它可以被模糊化为几个模糊集合,每个模糊集合都有自己的隶属度函数μA(x)。例如,对于价格变化x,我们可以定义“低”、“中”、“高”三个模糊集合,并为其定义隶属度函数。
规则层
规则层包含一系列模糊规则,这些规则反映了专家知识或通过学习得到的经验规则。一个典型的模糊规则可以表示为:“如果价格变化是高的并且MACD是正的,则预测的趋势是上涨”。形式上,模糊规则可以表示为:

规范化层

输出层
输出层负责计算最终的输出值。输出值可以根据所有规则的激活程度加权求和得到:

基于模糊神经网络的金融序列预测算法能够有效处理金融市场的非线性、不确定性和模糊性问题。通过结合模糊逻辑的强大表达能力和神经网络的学习能力,这种算法能够捕捉到复杂的市场行为模式,从而为投资者提供更加准确的预测结果。
5.完整程序
VVV
相关文章:
基于模糊神经网络的金融序列预测算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于模糊神经网络的金融序列预测算法matlab仿真,根据序列的MAD,RSI,KD等指标实现序列的预测和最终收益分析。 2.测试软件版本以及运行结果展示 MATLAB2022A版本…...
STM32 HAL库常用功能封装
关中断 /*** brief 关闭所有中断(但是不包括fault和NMI中断)* param 无* retval 无*/ void sys_intx_disable(void) {__ASM volatile("cpsid i"); }开中断 /*** brief 开启所有中断* param 无* retval 无*/ void sys_intx_enabl…...
golang zap日志库 打印日志时显示的源文件始终是同一个问题解决方法 zap.Option函数可选项 zap.AddCallerSkip(1) 使用示例
这种情况一般出现在我们对zap日志库进行二次封装的情况下, 在打印日志的时候的源文件非我们期望的文件,如下 原因分析 出现这个问题的原因是zap函数内部在调用 runtime.Caller 时的skip层级不对了,因为我们进行了二次封装,所以za…...
BL196MQTT远程IO模块助力智能楼宇自动化升级
在智能楼宇自动化领域,每一个细节的优化都能带来整体效率与舒适度的显著提升。钡铼技术的BL196MQTT远程IO模块,以其卓越的灵活性和强大的性能,正在成为这一领域中推动楼宇自动化升级的关键力量。 钡铼技术IOy系列:创新与灵活性的…...
【面试宝典】Java面向对象面试题总结(上)
一、重写和重载 在Java中,重写(Override)和重载(Overload)是面向对象编程中两个非常重要的概念,它们都与方法的定义和调用有关,但两者有着本质的区别。 1、重写(Overrideÿ…...
如何运用独特的产业运营体系打造一流的数字媒体产业园
如何运用独特的产业运营体系打造一流的数字媒体产业园 2024-08-15 17:37树莓集团 在数字经济蓬勃发展的今天,数字媒体产业作为其中的重要一环,正展现出巨大的潜力和活力。而如何运用独特的产业运营体系,打造一流的数字媒体产业园࿰…...
安全基础学习-SHA-256
SHA-256 是一种密码学哈希函数,是 SHA-2(Secure Hash Algorithm 2)家族的一部分。它被广泛用于数据完整性验证、数字签名以及密码存储等领域。 1、SHA-256的原理 SHA-256 生成一个固定长度为 256 位(32 字节)的哈希值。无论输入数据的大小或类型,输出的哈希值始终是 25…...
Redis中Big Key该如何解决?
目录 1、Big Key的产生 2、BigKey场景分析 3、Big Key的危害 4、检测 BigKey 5、解决 BigKey 问题 Big Key拆分 (1)按时间/业务拆分 (2)按哈希(Hash)拆分 (3)按前缀树拆分…...
基于springboot的实习管理系统
TOC springboot207基于springboot的实习管理系统 绪论 1.1研究背景与意义 信息化管理模式是将行业中的工作流程由人工服务,逐渐转换为使用计算机技术的信息化管理服务。这种管理模式发展迅速,使用起来非常简单容易,用户甚至不用掌握相关的…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测
土地利用/土地覆盖数据是生态、环境和气象等领域众多模型的重要输入参数之一。基于遥感影像解译,可获取历史或当前任何一个区域的土地利用/土地覆盖数据,用于评估区域的生态环境变化、评价重大生态工程建设成效等。借助CLUE模型,实现对未来土…...
Rust 之环境搭建
前言 Rust 是一种现代的系统级编程语言,以其内存安全性、高性能和简洁的语法而著称。本文将介绍如何在不同操作系统上搭建 Rust 开发环境,并配置好基础工具,使您能够快速开始 Rust 编程。 1. 安装 Rust Rust 官方推荐使用 rustup 工具来管…...
基于微信小程序地图实现点位标注、覆盖物、地图聊天
目录 小程序部分map标签的使用获取用户经纬度并转换地址地图点击事件覆盖物标注点击并实现弹窗交互数据库及接口部分数据库表结构设计API搭建小程序接口使用注意事项wx.getLocation深入控制地图小程序部分 map标签的使用 创建小程序的步骤这里不再重复赘述,在wxml页面中放一个…...
xxl-job的分片广播+单播
1 介绍一下xxl-job XXL-JOB 是一个分布式任务调度平台,旨在为分布式应用系统提供开箱即用的调度解决方案。它非常易于使用,并具有很高的可扩展性。以下是 XXL-JOB 的详细介绍,包括其核心功能、架构设计、主要组件及其应用场景。 核心功能 简…...
情感分类代码
在进行自然语言处理中的情感分类时,通常需要准备以下几方面的内容: 1. **数据集**:高质量的标注数据集是关键,包括正面、负面和中性情感标记的文本。 2. **情感词典**:可用的情感词典,如SentiWordNet&…...
WPF—常用控件、属性、事件、详细介绍
WPF—常用控件、属性、事件、详细介绍 WPF(Windows Presentation Foundation)是微软推出的基于Windows 的用户界面框架,属于.NET Framework 3.0的一部分。它提供了统一的编程模型、语言和框架,真正做到了分离界面设计人员与开发人…...
Oracle遭遇bug导致共享内存无法分配报ORA-04031错误
1.故障描述 在7月17日上午11时左右,收到告警短信,提示集群节点2宕机,当即登陆该节点进行查看,发现数据库状态正常。但日志里出现大量的ORA-04031报错,提示无法分配shared_pool,当时手动执行shared pool刷新…...
SAP BRIM用于应收账款AR收入中台
SAP BRIM(Billing and Revenue Innovation Management)是SAP提供的一个综合性解决方案,旨在帮助企业高效管理计费和收入流程。它与SAP ERP系统集成,提供端到端的功能,简化计费流程,自动化收入确认ÿ…...
LVS原理简介
LVS是Linux virtual server的缩写,为linux虚拟服务器,是一个虚拟的服务器集群系统。LVS简单工作原理为用户请求LVS VIP,LVS根据转发方式和算法,将请求转发给后端服务器,后端服务器接收到请求,返回给用户。对…...
Qt五大核心特性之元对象系统
前言 Qt 的元对象系统(Meta-Object System)是 Qt 框架的核心之一,提供了一些 C 原生不具备的功能(因为在C它们是静态的),如反射、信号槽机制、属性系统等。通过这个系统,Qt 实现了许多强大的功能,这使得它…...
开放式耳机伤耳朵吗?开放式耳机在一定程度上保护我们的耳朵
开放式耳机通常被认为对耳朵的伤害较小,因为它们不需要插入耳道,从而减少了耳道内的压力和潜在的感染风险。与传统入耳式耳机相比,开放式耳机允许耳朵自然通风,减少耳道内的湿气和热量积聚,这有助于保持耳朵的健康。 然…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
