当前位置: 首页 > news >正文

博弈论,CF 1600E - Array Game

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

1600E - Array Game

二、解题报告

1、思路分析

记最长递增前缀长度为L,最长递减后缀长度为R

必胜态:L R 一奇一偶 或者 二者均奇

否则为必败态
证明:

先考虑一侧,比如递增前缀,如果L是偶数,那么我们先手在左侧拿,后手一定也能在左侧拿

如果一直保持左侧拿,先手就输了

如果LR都是偶数,那么就算先手前后来回换,我们一定会走到一侧没法拿另一侧为偶数,然后输掉游戏,因此 LR都是偶数为必败态

若L,R一奇一偶,那么先手拿奇,后手就落入了必败态

若L,R二者均奇,那么我们拿第一个元素大的那个,就会使得一侧不能拿,后手会落入必败态

2、复杂度

时间复杂度: O(N)空间复杂度:O(N)

3、代码详解

 ​
#include <bits/stdc++.h>
#include <ranges>using i64 = long long;
using i32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr int P = 1'000'000'007;void solve() {int n;std::cin >> n;std::vector<int> a(n);for (int i = 0; i < n; ++ i) std::cin >> a[i];int L = 0, R = 0;for (int i = 0; i < n; ++ i)if (!i || a[i] > a[i - 1])++ L;elsebreak;for (int i = n - 1; ~i; -- i)if (i + 1 == n || a[i] > a[i + 1])++ R;elsebreak;if (((L + R) & 1) || ((L & 1) && (R & 1)))std::cout << "Alice";elsestd::cout << "Bob";
}auto FIO = []{std::ios::sync_with_stdio(false);std::cin.tie(nullptr);std::cout.tie(nullptr);return 0;
}();int main () {#ifdef DEBUGfreopen("in.txt", "r", stdin);freopen("out.txt", "w", stdout);#endifint T = 1;// std::cin >> T;while (T --)solve();return 0;
}

相关文章:

博弈论,CF 1600E - Array Game

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 1600E - Array Game 二、解题报告 1、思路分析 记最长递增前缀长度为L&a…...

win10安装docker,打包python、java然后centos执行镜像

一、win10安装Docker Desktop docker官网&#xff08;需要魔法&#xff09;下载&#xff1a;https://www.docker.com/products/docker-desktop/ 安装方法参考&#xff1a;https://blog.csdn.net/beautifulmemory/article/details/137970794 下载完毕后界面安装&#xff0c;不勾…...

【数据结构入门】二叉树之堆的实现

文章目录 前言一、树1.1 树的概念1.2 树的相关概念 二、二叉树2.1 二叉树的概念2.2 特殊的二叉树2.3 二叉树的性质 三、堆3.1 堆的概念3.2 堆的性质3.3 堆的存储3.4 堆的实现3.4.1 堆的初始化3.4.2 堆的销毁3.4.1 堆向上调整算法3.4.2 堆向下调整算法3.4.3 堆的创建3.4.4 堆的插…...

智能微气候:精准调控背后的算法革命

&#xff08; 于景鑫 国家农业信息化工程技术研究中心&#xff09;当人工智能遇见现代农业,会擦出怎样的火花?随着数字农业、智慧农业的蓬勃发展,人工智能技术正以前所未有的速度渗透到农业生产的方方面面。其中,以深度学习为代表的前沿算法,尤其是大语言模型(LLM),正在成为驱…...

eNSP 华为交换机链路聚合

华为交换机链路聚合 链路聚合好处&#xff1a; 1、提高带宽 2、链路冗余 SW_2&#xff1a; <Huawei>sys [Huawei]sys SW_2 [SW_2]vlan batch 10 20 [SW_2]int g0/0/4 [SW_2-GigabitEthernet0/0/4]port link-type access [SW_2-GigabitEthernet0/0/4]port default vl…...

编译器揭秘

从上世纪50年代开始&#xff0c;编程语言五花八门&#xff0c;编译器和解释器层出不穷。此处只列出常见编程语言的编译器和解释器信息&#xff0c;不常见的编程语言有单独文章介绍。 C/C cc 此处代表Unix C编译器&#xff0c;其他平台可能借用cc软链接到真正的C编译器。MSVC 微…...

ubuntu下qt连接mysql出现 QMYSQL driver not loaded

1、首先检查是否重新安装了MySQL的驱动&#xff0c;可以使用命令&#xff1a; sudo apt-get remove libqt5sql5-mysql sudo apt-get install libqt5sql5-mysql 2、重新安装ibmysqlclient-dev即可解决 sudo apt-get remove libmysqlclient-dev sudo apt-get install libmysq…...

html 首行缩进2字符

1. html 首行缩进2字符 1.1. 场景 在Html开发中让一段文字&#xff08;富文本等&#xff09;首行缩进两个文字&#xff0c;可能在前面加上8个“ ”&#xff0c;因为过去对CSS不熟悉&#xff0c;这种方法实现虽然比较直接&#xff0c;但是文字多的时候会有很多“ ”充斥在代码中…...

什么是IP?

目录 简介 IP IP协议 IP地址 发展历程 IP地址类型 公有地址 私有地址 IP地址编址方式 A类IP地址 B类IP地址 C类IP地址 D类IP地址 特殊的网址 子网 超网 无类间路由 IP地址的分配 IP地址管理 手工管理模式 DHCP分配IP地址的管理模式 通过交换机管理IP 地址…...

js拖拽交换元素位置

摘要:最近在做会议系统,9宫格小画面要支持拖拽调整顺序,需求已经实现了,简单记录下当时的逻辑处理。 /* 关于拖拽逻辑处理 start */ // 当前在拖动的下标 const curDragIndex useRef<number>(-1); /* 拖拽元素事件* onDragStart_开始* onDragend_结束 */ const handleD…...

在 C++ 中实现自定义容器的实用指南

在 C 中实现自定义容器的实用指南 在 C 编程中&#xff0c;容器是存储和管理数据的基本工具。标准库提供了多种容器&#xff0c;如 std::vector、std::list 和 std::map&#xff0c;但在某些情况下&#xff0c;开发者可能需要实现自定义容器以满足特定需求。本文将详细介绍如何…...

《深入浅出WPF》读书笔记.4名称空间详解

《深入浅出WPF》读书笔记.4名称空间详解 背景 主要讲明名称空间概念&#xff0c;可以理解为命名空间的引用。 xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml" &#x1f446;如x可以理解为一些列命名空间的引用。 不一一列举&#xff0c;只讲几个特殊的…...

电驱动总成

电驱动总成&#xff08;Electric Drive Assembly&#xff09;是电动汽车和混合动力汽车中关键的组成部分&#xff0c;主要负责将电能转化为机械能&#xff0c;以驱动汽车的轮胎。电驱动总成包括多个关键组件&#xff0c;通常可以分为以下几个主要部分&#xff1a; ### 主要组成…...

JavaScript class和正则

正则表达式练习 出生日期 年 月 日 ()表示一个整体 console.log(1909.match(^19\\d{2}$)); console.log(2024.match(^20(([01][0-9])|(2[0-4]))$)); //年 console.log(1909.match(^(19\\d{2})|(20(([01][0-9])|(2[0-4])))$)); // 月 console.log(12.match(^(0[1-9])|(1[0-2])…...

[Linux#42][线程] 锁的接口 | 原理 | 封装与运用 | 线程安全

互斥量 mutex • 大部分情况&#xff0c;线程使用的数据都是局部变量&#xff0c;变量的地址空间在线程栈空间 内&#xff0c;这种情况&#xff0c;变量归属单个线程&#xff0c;其他线程无法获得这种变量。 • 但有时候&#xff0c;很多变量都需要在线程间共享&#xff0c;这…...

奇异递归Template有啥奇的?

如果一个模版看起来很头痛&#xff0c;那么大概率这种模版是用来炫技&#xff0c;没啥用的&#xff0c;但是CRTP这个模版&#xff0c;虽然看起来头大&#xff0c;但是却经常被端上桌~ 奇异递归模板模式&#xff08;Curiously Recurring Template Pattern, CRTP&#xff09;是一…...

每天五分钟深度学习框架pytorch:神经网络工具箱nn的介绍

本文重点 我们前面一章学习了自动求导,这很有用,但是在实际使用中我们基本不会使用,因为这个技术过于底层,我们接下来将学习pytorch中的nn模块,它是构建于autograd之上的神经网络模块,也就是说我们使用pytorch封装好的神经网络层,它自动会具有求导的功能,也就是说这部…...

【办公软件】安全风险 Microsoft 已阻止宏运行,因为此文件的来源不受信任

Excel 2019版本&#xff0c;就出现安全风险 Microsoft 已阻止宏运行 因为此文件的来源不受信任的问题&#xff0c;宏直接就用不了了。 网上的解决方法&#xff0c;文件右键属性->取消安全锁。但存在没有安全锁这个选项。后查询到一个简单的解决方法。 打开Excel表格->文件…...

JavaScript语法基础之流程结构(顺序、选择、循环结构)

目录 1. 流程控制 1.1. 流程控制简介 1.1.1. 顺序结构 1.1.2. 选择结构 1.1.3. 循环结构 1.2. 选择结构&#xff1a;if 1.2.1. 单向选择&#xff1a;if… 1.2.2. 双向选择&#xff1a;if…else… 1.2.3. 多向选择&#xff1a;if…else_if…else… 1.3. 选择结构&#…...

集团数字化转型方案(四)

集团数字化转型方案通过全面部署人工智能&#xff08;AI&#xff09;、大数据分析、云计算和物联网&#xff08;IoT&#xff09;技术&#xff0c;创建了一个智能化的企业运营平台&#xff0c;涵盖从业务流程自动化、实时数据监控、精准决策支持&#xff0c;到个性化客户服务和高…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...