当前位置: 首页 > news >正文

Transforms的常见用法

文章目录

    • 一、封装函数与普通函数的用法区别
    • 二、Image.open()打开图片的格式
    • 三、ToTensor打开图片格式
    • 四、ToTensor使用
    • 五、Normalize归一化使用
    • 六、Resize的使用
    • 七、Compose - Resize 使用
    • 八、RandomCrop() 随机裁剪用法

一、封装函数与普通函数的用法区别

class Person:def __call__(self, name):print("__call__" + "Hello" + name)def hello(self,name):print("hello" + name)person = Person()
person("周杰伦")
person.hello("林俊杰")

运行结果:
在这里插入图片描述
注释:

  • 双斜杠"__"封装的函数【 def __call__(self, name):】,在调用的时候直接加参数就可以使用了
    person("周杰伦")
  • 而直接定义的函数,则需要通过 “.” +函数名来进行使用,如person.hello("林俊杰")

二、Image.open()打开图片的格式

from PIL import Image
from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')
print(img)

运行结果:

在这里插入图片描述
因此可以知道 Image.open()打开图片的格式为PIL形

三、ToTensor打开图片格式

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
print(img_tensor)

运行结果:
在这里插入图片描述
注:可以看到最终得到的是 tensor 形

四、ToTensor使用

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()

在终端输入 tensorboard --logdir=logs

得到链接
在这里插入图片描述
点开即可查看照片
在这里插入图片描述

五、Normalize归一化使用

归一化的计算方式:output[channel] = (input[channel] - mean[channel]) / std[channel]

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Normalize
print(img_tensor[0][0][0]) #将图片的第一层,第一行,第一列将他输出出来
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0]) #经过归一化输出的第一层,第一行,第一列将他输出出来writer.close()

运行结果:
在这里插入图片描述
注:最开始是 0.31 ,经过变换之后就变成了 -0.37

将上面的代码进行输出一下

writer.add_image("Normalize",img_norm)

在这里插入图片描述
可以看出图片的改变

六、Resize的使用

先观察Resize的输出类型

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Resize
print(img.size)
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)
print(img_resize)writer.close()

运行结果:
在这里插入图片描述
可以知道Resize的输出结果是 PIL形,并且尺寸从(768,512) 变成了现在的 size = 512 x 512

观察图片

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Resize
print(img.size)
trans_resize = transforms.Resize((512,512))#img PIL形 --> 经过resize -> img_resize PIL形
img_resize = trans_resize(img)# img_resize PIL形 -> 经过totensor -> img_resize tensor形 ->进行图像的输出
img_resize = trans_totensor(img_resize)#图片写出
writer.add_image("Resize",img_resize,0)print(img_resize)writer.close()

运行结果:
在这里插入图片描述
注:可以看出图片经过了裁剪

七、Compose - Resize 使用

如果给Resize()括号中写一个整数形int,那么图片不会改变高和宽,而是整体进行一个等比缩放
如:trans_resize_2 = transforms.Resize(512)

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
writer.close()#Resize
print(img.size)
trans_resize = transforms.Resize((512,512))#img PIL形 --> 经过resize -> img_resize PIL形
img_resize = trans_resize(img)# img_resize PIL形 -> 经过totensor -> img_resize tensor形 ->进行图像的输出
img_resize = trans_totensor(img_resize)#图片写出
writer.add_image("Resize",img_resize,0)print(img_resize)writer.close()#Compose - Resize
trans_resize_2 = transforms.Resize(512)# 创建一个transforms.Compose对象,它将多个图像变换操作组合成一个序列
tran_compose = transforms.Compose([trans_resize_2,trans_totensor])img_resize_2 = tran_compose(img)# "Resize"是图像的标签,img_resize_2是经过变换的图像,1是图像在TensorBoard中的步数(step)
writer.add_image("Resize",img_resize_2,1)

注:Compose方法要求前面的输出做后面的输入,比方说tran_compose = transforms.Compose([trans_resize_2,trans_totensor]),前面的输出类型是PIL形,故要求后面的输入也要是PIL形,所以可以直接使用compose
但是如果tran_compose = transforms.Compose([trans_totensor,trans_resize_2]),也就是前面的输出是totensor形,但是后面的输入要求PIL形,这样子进行compose的话就会产生报错。

运行结果:
在这里插入图片描述

八、RandomCrop() 随机裁剪用法

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()trans_random = transforms.RandomCrop(512)
trans_compose_2 = transforms.Compose([trans_random,trans_totensor])
for i in range(10):img_crop = trans_compose_2(img)writer.add_image("RandomCrop",img_crop, i)
writer.close()

运行结果:
在这里插入图片描述
在这里插入图片描述

自己设置高和宽:

**from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import transformswriter = SummaryWriter("logs")
img = Image.open('Dataset/train/ants/0013035.jpg')trans_totensor = transforms.ToTensor()
#设置高为50,宽为100
trans_random = transforms.RandomCrop((50, 100))
trans_compose_2 = transforms.Compose([trans_random,trans_totensor])
for i in range(10):img_crop = trans_compose_2(img)writer.add_image("RandomCrop",img_crop, i)
writer.close()**

运行结果:
在这里插入图片描述

相关文章:

Transforms的常见用法

文章目录 一、封装函数与普通函数的用法区别二、Image.open()打开图片的格式三、ToTensor打开图片格式四、ToTensor使用五、Normalize归一化使用六、Resize的使用七、Compose - Resize 使用八、RandomCrop() 随机裁剪用法 一、封装函数与普通函数的用法区…...

js 创建 React 项目

起因(目的): js 很久没写了。 react js 之前粗略看过, 最近又需要用到, 继续学习, 记录 积累。 1. 新建 React 项目 的几种方法。 官方建议使用 next 来创建 React 项目, 但是我觉得太复杂了。以后再看看. npx create-next-applatest # !!! 不建议使…...

WPF 中常用 `Transform` 类的介绍、使用示例和适用场景

WPF 中常用 Transform 类的介绍、使用示例和适用场景 使用场景解释代码示例示例代码解释 Transform 类描述使用示例适用场景TranslateTransform用于沿 X 轴或 Y 轴平移&#xff08;移动&#xff09;元素。xml <TranslateTransform X"50" Y"100" />移…...

ElasticSearch-DSL

查询所有 match_all 分页查询 from size深分页查询 Scroll指定字段排序 sort返回指定字段_sourcematch 短语查询 match_phrase多字段查询 multi_matchquery_string simple_query_string 关键词查询 Term 结构化搜索 前缀查询 prefix通配符查询 wildcard范围查询 range多 id 查…...

Learn ComputeShader 07 Post Processing

这次我们将使用计算机着色器对图像进行后处理。 要进行后处理需要将渲染图像从cpu传递给gpu&#xff0c;并在gpu对图像进行处理然后传回cpu。 首先创建一个后处理基类BasePP 首先声明需要用到的属性。 using System.Collections; using System.Collections.Generic; using …...

初始QT!

作业&#xff1a;了解QT文件夹初始代码的意义 QT core gui #QT工程所需得类库 core是核心库 gui图形化界面相关库类 greaterThan(QT_MAJOR_VERSION, 4): QT widgets #版本超过4.0会加上widgetsCONFIG c11 #该编辑器支持c11后的版本 # The following define makes you…...

全国大学生数据建模比赛——深度学习

全国大学生数学建模比赛中&#xff0c;深度学习可以成为解决复杂问题的有力手段。 一、深度学习的优势在比赛中的体现 强大的模式识别能力&#xff1a;深度学习模型&#xff0c;如卷积神经网络&#xff08;CNN&#xff09;和循环神经网络&#xff08;RNN&#xff09;&#xff0…...

Qt技巧(二)-滑动界面,轮询控件,循环操作控件

在Qt界面开发过程中&#xff0c;我们常常要对同类部件&#xff0c;具有同样功能的一系列部件进行操作&#xff0c;比如&#xff1a; 这个页面该怎么设计&#xff0c;中间的几个选项该怎么操作&#xff1f; 我们在主工程中添加一个设计师界面类&#xff0c;类名设置为“BrandF…...

003——单链表

1.链式存储的特点 逻辑&#xff08;通过指针实现&#xff09;上相邻&#xff0c;物理上可相邻可不相邻 2.结点&#xff08;节点都可以&#xff09; 4&#xff08;&8&#xff09; 8&#xff08;&6&#xff09; 6&#xff08;&1&#xff09; 1&#xff08;&…...

XILINX平台下LINUX DMA驱动调研

专栏目录 高质量文章导航-持续更新中-CSDN博客 基础概念 VA:virtual address称为虚拟地址, PA:physical address称为物理地址。 CPU通过地址来访问内存中的单元,如果CPU没有MMU,或者有MMU但没有启动,那么CPU内核在取指令或者访问内存时发出的地址(此时必须是物理地址…...

Oracle数据库安装和配置指南

Oracle数据库是一款功能强大的企业级关系数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;广泛应用于各种规模的企业和组织。其强大的性能和丰富的功能使其成为数据库管理的首选解决方案之一。以下是关于如何安装和配置 Oracle 数据库的详细指南。 一、准备工作 在开…...

制造业中工艺路线(工序)与产线(工作中心)关系

一.工艺路线与生产线是数字孪生中的虚实关系&#xff1a; 1.工艺路线为虚&#xff0c;生产线体为实&#xff1b; 2.工艺路线指导生产线的生产组织&#xff0c;生产线承载工艺路线的能力&#xff0c;把虚拟的生产信息流变成真实的产流。 二.工艺路线与生产线是数字孪生中互为“…...

目标跟踪算法——ByteTrack算法原理解析

文章目录 ByteTrack1. ByteTrack算法步骤&#xff1a;2. 算法解释2.1 模型初始化2.2 模型更新算法流程2.2.1 检测结果划分&#xff0c;划分为高分和较低分段2.2.2 高分段处理手段2.2.3 最优匹配与未匹配划分2.2.4 低分框再匹配2.2.5 未确认轨迹处理2.2.6 更新状态 2.3 匈牙利匹…...

C语言编译的过程

文章目录 1. 预处理&#xff08;Preprocessing&#xff09;2. 编译&#xff08;Compilation&#xff09;3. 汇编&#xff08;Assembly&#xff09;4. 链接&#xff08;Linking&#xff09;总结 c语言通过编译器直接编译成机器语言程序。 C语言程序的编译过程通常分为四个主要步…...

前端面试题——栈与队列、动态路由、链表

栈、队列与链表 Java数据结构栏目总结-CSDN博客 栈&#xff08;Stack&#xff09; 栈是一种后进先出&#xff08;LIFO, Last In First Out&#xff09;的数据结构。它只允许在栈顶进行添加&#xff08;push&#xff09;或删除&#xff08;pop&#xff09;元素的操作。 基本操…...

Java算法之计数排序(Counting Sort)

简介 计数排序是一种线性时间复杂度的排序算法&#xff0c;它不依赖于元素之间的比较&#xff0c;而是通过统计数组中每个元素出现的次数&#xff0c;然后根据这些统计信息对元素进行排序。这种算法特别适用于整数且整数的范围不是非常大时。 算法步骤 找出数组中的最大值。…...

【系统架构设计师-2012年】综合知识-答案及详解

更多内容请见&#xff1a; 备考系统架构设计师-核心总结索引 文章目录 【第1~2题】【第3~4题】【第5题】【第6题】【第7题】【第8题】【第9题】【第10~11题】【第12~13题】【第14~19题】【第20~21题】【第22~24题】【第25~26题】【第27~31题】【第32~33题】【第34~36题】【第37…...

webpack4手动搭建Vue项目

小满视频 很多解释使用通义灵码搜的,通义灵码的搜索结果也是有错误的全程使用pnpm包管理工具&#xff0c;和npm的用法基本一样 学习总结 1. 多看看webpack官网 2. webpack的作用&#xff1a;配置一堆东西&#xff0c;达到运行程序的目的 3. 无论什么东西都转成js&#xff0c;…...

Python爬虫所需的技术及其原理(简单易懂)

导言 随着互联网的发展&#xff0c;大量的数据被存储在网络上&#xff0c;而我们需要从中获取有用的信息。Python作为一种功能强大且易于学习的编程语言&#xff0c;被广泛用于网络爬虫的开发。本文将详细介绍Python爬虫所需的技术及其原理&#xff0c;并提供相关的代码案例。…...

FxFactory 8 for Mac 视觉特效插件包安装

Mac分享吧 文章目录 介绍页面效果一、下载软件二、开始安装1、Install安装2、显示软件页面&#xff0c;表示安装成功3、补丁安装 三、注意事项1、若已安装过其他版本&#xff0c;需要使用软件自带的卸载功能进行软件卸载&#xff0c;再安装此版本 安装完成&#xff01;&#x…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...