当前位置: 首页 > news >正文

数据链路层(MAC地址)

文章目录

  • 数据链路层(MAC地址)
    • 1、以太网
    • 2、以太网帧格式
    • 3、MAC地址
    • 4、对比理解 MAC 地址和 IP 地址
    • 5、最大传输单元(MTU)
    • 6、MTU 对 IP 协议的影响
    • 7、MTU 对 UDP 协议的影响
    • 8、MTU 对 TCP 协议的影响
    • 9、查看硬件地址和 MTU
    • 10、ARP 协议
      • 10.1、ARP 协议的作用
      • 10.2、ARP 协议的工作流程
      • 10.3、ARP 数据报的格式

img

数据链路层(MAC地址)

用于两个设备(同一种数据链路节点)之间进行传递。

1、以太网

“以太网” 不是一种具体的网络,而是一种技术标准,既包含了数据链路层的内容,也包含了一些物理层的内容。

例如:规定了网络拓扑结构,访问控制方式,传输速率等。

以太网中的网线必须使用双绞线,传输速率有 10M,100M,1000M 等。

以太网是当前应用最广泛的局域网技术,和以太网并列的还有令牌环网,无线LAN 等。


2、以太网帧格式

源地址和目的地址是指网卡的硬件地址(也叫 MAC 地址),长度是 48 位,是在网卡出厂时固化的

帧协议类型字段有三种值,分别对应 IP(0800)、ARP(0806)、RARP(8035)

帧末尾是 CRC 校验码(主要用来检测或校核数据传输或者保存后可能原数据出现的错误)。


3、MAC地址

MAC 地址用来识别数据链路层中相连的节点,长度为 48 位,即 6 个字节。

一般用 16 进制数字加上冒号的形式来表示(例如:08:00:27:03:fb:19) ,在网卡出厂时就确定了,不能修改。

MAC 地址通常是唯一的(虚拟机中的 MAC 地址不是真实的 MAC 地址, 可能会冲突,也有些网卡支持用户配置 MAC 地址)


4、对比理解 MAC 地址和 IP 地址

IP 地址描述的是路途总体的起点和终点

MAC 地址描述的是路途上的每一个区间的起点和终点,在这区间,下一跳的 MAC 地址的是靠 IP 来获取的(下面会讲ARP协议)。


5、最大传输单元(MTU)

最大传输单元(MTU)是数据链路层能携带的最大数据。

  • 以太网帧中的数据长度规定最小 46 字节,最大 1500 字节,传输的数据包的长度不够 46 字节,要在后面补填充位
  • 最大值 1500 称为以太网的最大传输单元(MTU),不同的网络类型有不同的MTU
  • 如果一个数据包从以太网路由到拨号链路上,数据包长度大于拨号链路的 MTU了,则需要对数据包进行分片(fragmentation)
  • 不同的数据链路层标准的 MTU 是不同的。比如拨号网络(PPPoE)MTU是 1492 字节。

6、MTU 对 IP 协议的影响

由于数据链路层 MTU 的限制,对于较大的 IP 数据包要进行分包。

  • 将较大的 IP 包分成多个小包,并给每个小包打上标识,每个小包 IP 协议头的 16 位标识(id) 都是相同的
  • 每个小包的 IP 协议头的 3 位标志字段中,第 2 位置为 0,表示允许分片,第 3 位来表示结束标记(当前是否是最后一个小包,是的话置为 1,否则置为 0)
  • 到达对端时再将这些小包,会按顺序重组,拼装到一起返回给传输层
  • 一旦这些小包中任意一个小包丢失,接收端的重组就会失败,但是 IP 层不会负责重新传输数据


7、MTU 对 UDP 协议的影响

  • 一旦 UDP 携带的数据超过 1472(1500 - 20(IP 首部) - 8(UDP 首部)),那么就会在网络层分成多个 IP 数据报

  • 这多个 IP 数据报有任意一个丢失,都会引起接收端网络层重组失败(因为 UDP 没有超时重传等机制)

  • 这就意味着,如果 UDP 数据报在网络层被分片,整个数据被丢失的概率就大大增加了


8、MTU 对 TCP 协议的影响

  • TCP 的一个数据报也不能无限大,还是受制于 MTU

  • TCP 的单个数据报的最大消息长度,称为 MSS(Max Segment Size)

  • TCP 在建立连接的过程中,通信双方会进行 MSS 协商

  • 最理想的情况下,MSS 的值正好是在 IP 不会被分片处理的最大长度(这个长度仍然是受制于数据链路层的 MTU)

  • 双方在发送 SYN 的时候会在 TCP 头部写入自己能支持的 MSS 值,然后双方得知对方的 MSS 值之后,选择较小的作为最终 MSS

  • MSS 的值就是在 TCP 首部的 40 字节变长选项中(kind=2)

MTU 和 MSS 的关系:这里 FCS 和 CRC 差不多意思,都是校验数据的。


9、查看硬件地址和 MTU

使用 ifconfig 命令:可以看 IP 地址,子网掩码,MAC 地址,MTU。

xp2@Xpccccc:~$ ifconfig 
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500inet 192.168.0.2  netmask 255.255.0.0  broadcast 192.168.255.255inet6 fe80::216:3eff:fe69:921e  prefixlen 64  scopeid 0x20<link>ether 00:16:3e:69:92:1e  txqueuelen 1000  (Ethernet)RX packets 2006234  bytes 1866052644 (1.8 GB)RX errors 0  dropped 0  overruns 0  frame 0TX packets 1265736  bytes 330604772 (330.6 MB)TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

IP 地址:192.168.0.2

子网掩码:255.255.0.0

MAC 地址:00:16:3e:69:92:1e

MTU:1500


10、ARP 协议

虽然我们在这里介绍 ARP 协议,但是需要强调,ARP 不是一个单纯的数据链路层的协议,而是一个介于数据链路层和网络层之间的协议。

10.1、ARP 协议的作用

地址解析协议:ARP(Address Resolution Protocol)

ARP 协议建立了主机 IP 地址 和 MAC 地址 的映射关系

  • 在网络通讯时,源主机的应用程序知道目的主机的 IP 地址和端口号,却不知道目的主机的硬件地址

  • 由于数据包首先是被网卡(根据 MAC 地址)接收到再去处理上层协议的,如果接收到的数据包的硬件地址与本机不符,则直接丢弃

  • 因此在通讯前必须获得目的主机的硬件地址

  • 如果当前局域网不存在目标主机 IP ,则把默认转发的 IP 口(路由器)的 MAC 返回。


10.2、ARP 协议的工作流程

  • 源主机发出 ARP 请求,询问“IP 地址是 172.20.1.2 的主机的硬件地址是多少?并将这个请求广播到本地网段(以太网帧首部的硬件地址填 FF:FF:FF:FF:FF:FF 表示广播(一对多))

  • 目的主机接收到广播的 ARP 请求,发现其中的 IP 地址与本机相符,则发送一个ARP 应答数据包给源主机,将自己的硬件地址填写在应答包中,这个过程是单播(一对一)

  • 每台主机都维护一个 ARP 缓存表,可以用 arp -a 命令查看。缓存表(经常访问的 IP 可以节省时间)中的表项有过期时间(一般为 20 分钟,防止有的 IP 不在了,比如失效),如果 20 分钟内没有再次使用某个表项,则该表项失效,下次还要发 ARP 请求来获得目的主机的硬件地址。

    xp2@Xpccccc:~$ arp -a
    ? (192.168.0.1) at ee:ff:ff:ff:ff:ff [ether] on eth0
    

10.3、ARP 数据报的格式

  • 注意到源 MAC 地址、目的 MAC 地址在以太网首部和 ARP 请求中各出现一次,对于链路层为以太网的情况是多余的,但如果链路层是其它类型的网络则有可能是必要的
  • 硬件类型指链路层网络类型,1 为以太网
  • 协议类型指要转换的地址类型,0x0800 为 IP 地址
  • 硬件地址长度对应为 以太网地址 为 6 字节
  • 协议地址长度对应 IP 地址为 4 字节
  • op 字段为 1 表示 ARP 请求,op 字段为 2 表示 ARP 应答

OKOK,数据链路层(MAC地址)就到这里,如果你对Linux和C++也感兴趣的话,可以看看我的主页哦。下面是我的github主页,里面记录了我的学习代码和leetcode的一些题的题解,有兴趣的可以看看。

Xpccccc的github主页

相关文章:

数据链路层(MAC地址)

文章目录 数据链路层&#xff08;MAC地址&#xff09;1、以太网2、以太网帧格式3、MAC地址4、对比理解 MAC 地址和 IP 地址5、最大传输单元&#xff08;MTU&#xff09;6、MTU 对 IP 协议的影响7、MTU 对 UDP 协议的影响8、MTU 对 TCP 协议的影响9、查看硬件地址和 MTU10、ARP …...

【ruby java】登陆功能/邮件发送模版240903

Rails 风格登录系统添加全面而详细的注释&#xff0c;解释每个部分的功能和用途。​​​​​​​​​ 详细注释&#xff0c;解释了每个文件和代码块的功能。以下是一些关键点的总结&#xff1a; 1. 控制器&#xff08;Controllers&#xff09;: - ApplicationController: …...

告别格式不兼容烦恼!ape转换mp3,分享3个简单方法

各位读者们&#xff0c;你们是否有过这种体验&#xff1a;满怀期待地在网上下载一首好听的歌曲&#xff0c;结果怎么点击手机都播放不了&#xff0c;定睛一看&#xff0c;弹窗显示“无法播放该音频文件”。这是为什么呢&#xff1f;原来那首歌的音频格式是ape&#xff0c;不被手…...

Java核心知识体系-并发与多线程:线程基础

1 先导 Java线程基础主要包含如下知识点&#xff0c;相信我们再面试的过程中&#xff0c;经常会遇到类似的提问。 1、线程有哪几种状态? 线程之间如何转变&#xff1f; 2、线程有哪几种实现方式? 各优缺点&#xff1f; 3、线程的基本操作&#xff08;线程管理机制&#xff…...

KRaft模式下的Kafka启动指南:摆脱Zookeeper依赖

一、背景介绍 多年来&#xff0c;人们一直在同时使用Apache ZooKeeper和Apache Kafka。但是自Apache Kafka 3.3发布以来&#xff0c;它就可以在没有ZooKeeper的情况下运行。同时它包含了新的命令kafka-metadata-quorum和kafka-metadata-shell?该如何安装新版kafka&#xff0c…...

【数据库】MySQL-基础篇-函数

专栏文章索引&#xff1a;数据库 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、简介 二、字符串函数 三、数值函数 四、日期函数 五、流程函数 一、简介 函数 是指一段可以直接被另一段程序调用的程序或代码。 也就意味着&#xff0c;这一段程序或代码在 M…...

dp练习【4】

最长数对链 646. 最长数对链 给你一个由 n 个数对组成的数对数组 pairs &#xff0c;其中 pairs[i] [lefti, righti] 且 lefti < righti 。 现在&#xff0c;我们定义一种 跟随 关系&#xff0c;当且仅当 b < c 时&#xff0c;数对 p2 [c, d] 才可以跟在 p1 [a, b…...

php 实现推荐算法

在PHP中实现推荐算法的应用场景通常包括电商、社交媒体、内容平台等。推荐算法可以帮助用户找到与其兴趣相关的内容&#xff0c;提高用户体验和平台黏性。以下是几种常见的推荐算法及其PHP实现方式&#xff1a; 1. 基于协同过滤的推荐算法 协同过滤&#xff08;Collaborative…...

相机光学(三十六)——光圈

0.参考链接 &#xff08;1&#xff09;Hall光圈和Piris光圈的区别 &#xff08;2&#xff09;自动光圈及P-IRIS原理 1.光圈分类 Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下&#xff1a; Hall光圈&#xff1a;Hall光圈是一种传统的光电子元件&#xff0c;通…...

数据结构——树和二叉树

目录 一、树的概念 二、树结点之间的关系 三、二叉树 1、满二叉树 2、完全二叉树 四、二叉树的存储 1、顺序存储 2、链式存储 一、树的概念 如果数据和数据之间满足一对多的关系&#xff0c;将其逻辑结构称之为树 如下图&#xff1a;树的根与树的分支存在一对多的关系 将上…...

142. Go操作Kafka(confluent-kafka-go库)

文章目录 Apache kafka简介开始使用Apache Kafka构建生产者构建消费者 总结 之前已经有两篇文章介绍过 Go如何操作 kafka 28.windows安装kafka&#xff0c;Go操作kafka示例&#xff08;sarama库&#xff09; 51.Go操作kafka示例&#xff08;kafka-go库&#xff09; Apache ka…...

spring boot(学习笔记第十九课)

spring boot(学习笔记第十九课) Spring boot的batch框架&#xff0c;以及Swagger3(OpenAPI)整合 学习内容&#xff1a; Spring boot的batch框架Spring boot的Swagger3&#xff08;OpenAPI&#xff09;整合 1. Spring boot batch框架 Spring Batch是什么 Spring Batch 是一个…...

docker安装 redis 并且加密开启SSL/TLS通道

拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest redis:latest要在 Docker 容器中启动 Redis 并开启 SSL/TLS 加密&#xff0c;需按照以下步骤修改启动命令和配置…...

什么是ARM架构?什么是X86架构?两者的区别是什么?

一、什么是ARM架构 &#xff08;一&#xff09;起源于发展 ARM 架构由英国剑桥的 Acorn 计算机公司开发。因市场无合适产品&#xff0c;Acorn 自行设计出第一款微处理器&#xff0c;命名为 ARM。此后 ARM 架构不断发展&#xff0c;1990 年为与苹果合作成立 ARM 公司&#xff0…...

【vscode】vscode paste image插件设置

本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候&#xff0c;如果想插入图片&#xff0c;自带的粘贴只会粘贴到当前目录下&#xff0c;也没有文件重命名&#xff0c;很不友好。 在扩展商店里面有mushan的Paste Image插件&#xff0c;相比自带的&#xff0c;更加友好一点。但…...

自定义string类

#include <iostream> #include <string> int main() { std::string str "Hello, World!"; // 使用 c_str() 将 std::string 转换为 C 风格字符串&#xff0c;并传递给 printf printf("The string is: %s\n", str.c_str()); // 尝试修改…...

Python | Leetcode Python题解之第387题字符串中的第一个唯一字符

题目&#xff1a; 题解&#xff1a; class Solution:def firstUniqChar(self, s: str) -> int:position dict()q collections.deque()n len(s)for i, ch in enumerate(s):if ch not in position:position[ch] iq.append((s[i], i))else:position[ch] -1while q and po…...

RocketMQ 消费时序列化报错问题分析及解决

问题背景 在2024年3月7日&#xff0c;系统消费 RocketMQ 消息时出现了序列化报错&#xff0c;错误信息显示为&#xff1a; java.io.InvalidClassException: com.xxx.xxx.bean.mg.GoodsChangeLogMessage; local class incompatible: stream classdesc serialVersionUID... 这是…...

全能与专精:探索未来AI模型的发展趋势与市场潜力

文章目录 每日一句正能量前言AI模型的全面评估和比较AI模型的专精化和可扩展性AI模型的合理使用和道德规范后记 每日一句正能量 一个人&#xff0c;如果没有经受过投资失败的痛楚&#xff0c;又怎么会看到绝望之后的海阔天空。很多时候&#xff0c;经历了人生中最艰难的事&…...

Python深度学习:【开源数据集系列】ImageNet数据集

ImageNet 是一个大规模的视觉数据集,是计算机视觉领域最重要的基准数据集之一。该数据集由普林斯顿大学和斯坦福大学的研究人员发起,于 2009 年推出。ImageNet 是用于物体分类、目标检测、图像分割、姿势估计等多种任务的通用数据集,尤其在深度学习和计算机视觉的突破性研究…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

基于Springboot+Vue的办公管理系统

角色&#xff1a; 管理员、员工 技术&#xff1a; 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能&#xff1a; 该办公管理系统是一个综合性的企业内部管理平台&#xff0c;旨在提升企业运营效率和员工管理水…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...