dp练习【4】
最长数对链
646. 最长数对链
给你一个由 n
个数对组成的数对数组 pairs
,其中 pairs[i] = [lefti, righti]
且 lefti < righti
。
现在,我们定义一种 跟随 关系,当且仅当 b < c
时,数对 p2 = [c, d]
才可以跟在 p1 = [a, b]
后面。我们用这种形式来构造 数对链 。
找出并返回能够形成的 最长数对链的长度 。
你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。
示例 1:
输入:pairs = [[1,2], [2,3], [3,4]] 输出:2 解释:最长的数对链是 [1,2] -> [3,4] 。
示例 2:
输入:pairs = [[1,2],[7,8],[4,5]] 输出:3 解释:最长的数对链是 [1,2] -> [4,5] -> [7,8] 。
class Solution {public int findLongestChain(int[][] pairs) {int n = pairs.length;Arrays.sort(pairs, (a, b) -> a[0] - b[0]);int[] dp = new int[n];Arrays.fill(dp, 1);for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {if (pairs[i][0] > pairs[j][1]) {// 通过i位置与前面所有的比较,然后得到当前时候最多有多少对(j到i之间最大对数)dp[i] = Math.max(dp[i], dp[j] + 1);}}}return dp[n - 1];}
}
最长定差子序列
1218. 最长定差子序列
给你一个整数数组 arr
和一个整数 difference
,请你找出并返回 arr
中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference
。
子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr
派生出来的序列。
示例 1:
输入:arr = [1,2,3,4], difference = 1 输出:4 解释:最长的等差子序列是 [1,2,3,4]。
示例 2:
输入:arr = [1,3,5,7], difference = 1 输出:1 解释:最长的等差子序列是任意单个元素。
示例 3:
输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2 输出:4 解释:最长的等差子序列是 [7,5,3,1]。
这个题目不能用常规dp来做,会超时,比如说这样,就超时了
class Solution {public int longestSubsequence(int[] arr, int difference) {int n = arr.length;int[] dp = new int[n + 1];Arrays.fill(dp, 1);int maxLen = 1;for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (arr[i] - arr[j] == difference) {dp[i] = Math.max(dp[i], dp[j] + 1);}}maxLen = Math.max(maxLen,dp[i]);}return maxLen;}
}
要用哈希表来存储之前最长的重复子数组才行
class Solution {// 方法用于计算数组 arr 中具有固定差值 difference 的最长子序列长度public int longestSubsequence(int[] arr, int difference) {int ans = 0; // 初始化最长子序列的长度为 0// 创建一个大小为 40001 的整型数组 dp,用于存储动态规划的状态// 数组大小的选择是为了适应输入数据的变化范围,假设输入数据范围在 [-20000, 19999] 内int[] dp = new int[40001];// 遍历数组 arr 的每一个元素for (int num : arr) {// 为了使数组下标非负,将当前数字 num 偏移 20000 后使用作为 dp 数组的索引// dp[num + 20000] 存储了以 num 结尾的具有固定差值 difference 的最长子序列长度// dp[num + 20000 - difference] 则是前一个元素 (num - difference) 的最长子序列长度// 当前元素 num 的最长子序列长度为前一个元素的长度加 1dp[num + 20000] = dp[num + 20000 - difference] + 1;// 更新全局最长子序列长度 ans// 取当前已知的最长子序列长度和 dp[num + 20000] 中较大的值ans = Math.max(ans, dp[num + 20000]);}// 返回最长子序列的长度return ans;}
}
最长等差数列
1027. 最长等差数列
给你一个整数数组 nums
,返回 nums
中最长等差子序列的长度。
回想一下,nums
的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik]
,且 0 <= i1 < i2 < ... < ik <= nums.length - 1
。并且如果 seq[i+1] - seq[i]
( 0 <= i < seq.length - 1
) 的值都相同,那么序列 seq
是等差的。
示例 1:
输入:nums = [3,6,9,12] 输出:4 解释: 整个数组是公差为 3 的等差数列。
示例 2:
输入:nums = [9,4,7,2,10] 输出:3 解释: 最长的等差子序列是 [4,7,10]。
示例 3:
输入:nums = [20,1,15,3,10,5,8] 输出:4 解释: 最长的等差子序列是 [20,15,10,5]。
class Solution {// 方法接收一个整数数组 nums 作为参数public int longestArithSeqLength(int[] nums) {int n = nums.length; // 获取数组长度// 创建一个二维数组 dp,大小为 [n][1001],用于存储动态规划的结果int[][] dp = new int[n][1001];int maxLen = 0; // 初始化最长等差数列的长度为0// 从第二个元素开始遍历数组for (int k = 1; k < n; k++) {// 从第一个元素到第k-1个元素遍历for (int j = 0; j < k; j++) {// 计算两数之差,并加上500以保证下标非负// 这里假设差值的范围是 [-500, 500],因此差值加上500后可以作为下标int d = nums[k] - nums[j] + 500;// 根据差值 d 更新 dp[k][d] 的值,即以 nums[k] 结尾且差值为 d 的等差数列的长度// dp[j][d] 表示以 nums[j] 结尾且差值为 d 的等差数列的长度// 加1是因为当前元素 nums[k] 可以与前面的等差数列形成新的等差数列dp[k][d] = dp[j][d] + 1;// 更新最长等差数列的长度maxLen = Math.max(maxLen, dp[k][d]);}}// 最终返回最长等差数列的长度,由于 dp 数组中存储的是除第一个元素外的等差数列长度,所以需要加1return maxLen + 1;}
}
腾讯面试时的算法题目
牛客上看面经,看到有人写的,在面试之后,面试官出的两道dp。自己尝试了一下,发现难度还好,属于动态规划系列中【最长递增子序列】分类和【动态规划在字符串的应用】分类中类似的题型
最长重复子数组
718. 最长重复子数组
给两个整数数组 nums1
和 nums2
,返回 两个数组中 公共的 、长度最长的子数组的长度 。
示例 1:
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7] 输出:3 解释:长度最长的公共子数组是 [3,2,1] 。
示例 2:
输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0] 输出:5
提示:
1 <= nums1.length, nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 100
class Solution {public int longestArithSeqLength(int[] nums) {int n=nums.length;int[][] dp=new int[n][1001];int maxLen=0;//保存结果for(int k=1;k<n;k++){for(int j=0;j<k;j++){int d=nums[k]-nums[j]+500;//统一加偏移量,使下标非负dp[k][d]=dp[j][d]+1; //根据 d 去填充dp[k][d]maxLen=Math.max(maxLen,dp[k][d]);//维护最大值}}return maxLen+1;}
}
最长公共子序列
1143. 最长公共子序列
给定两个字符串 text1
和 text2
,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0
。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,
"ace"
是"abcde"
的子序列,但"aec"
不是"abcde"
的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = "abcde", text2 = "ace" 输出:3 解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc" 输出:3 解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def" 输出:0 解释:两个字符串没有公共子序列,返回 0
class Solution {public int longestCommonSubsequence(String text1, String text2) {int m = text1.length();int n = text2.length();int[][] dp = new int[n + 1][m + 1];for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (text1.charAt(j - 1) == text2.charAt(i - 1)) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);}}}return dp[n][m];}
}
每日一题
3174. 清除数字
给你一个字符串 s
。
你的任务是重复以下操作删除 所有 数字字符:
- 删除 第一个数字字符 以及它左边 最近 的 非数字 字符。
请你返回删除所有数字字符以后剩下的字符串。
示例 1:
输入:s = "abc"
输出:"abc"
解释:
字符串中没有数字。
示例 2:
输入:s = "cb34"
输出:""
解释:
一开始,我们对 s[2]
执行操作,s
变为 "c4"
。
然后对 s[1]
执行操作,s
变为 ""
。
用栈的思想解题:
class Solution {public String clearDigits(String s) {StringBuilder res = new StringBuilder();for (char c : s.toCharArray()){if (Character.isDigit(c)) {res.deleteCharAt(res.length() - 1);} else {res.append(c);}}return res.toString();}
}
相关文章:

dp练习【4】
最长数对链 646. 最长数对链 给你一个由 n 个数对组成的数对数组 pairs ,其中 pairs[i] [lefti, righti] 且 lefti < righti 。 现在,我们定义一种 跟随 关系,当且仅当 b < c 时,数对 p2 [c, d] 才可以跟在 p1 [a, b…...
php 实现推荐算法
在PHP中实现推荐算法的应用场景通常包括电商、社交媒体、内容平台等。推荐算法可以帮助用户找到与其兴趣相关的内容,提高用户体验和平台黏性。以下是几种常见的推荐算法及其PHP实现方式: 1. 基于协同过滤的推荐算法 协同过滤(Collaborative…...
相机光学(三十六)——光圈
0.参考链接 (1)Hall光圈和Piris光圈的区别 (2)自动光圈及P-IRIS原理 1.光圈分类 Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下: Hall光圈:Hall光圈是一种传统的光电子元件,通…...

数据结构——树和二叉树
目录 一、树的概念 二、树结点之间的关系 三、二叉树 1、满二叉树 2、完全二叉树 四、二叉树的存储 1、顺序存储 2、链式存储 一、树的概念 如果数据和数据之间满足一对多的关系,将其逻辑结构称之为树 如下图:树的根与树的分支存在一对多的关系 将上…...

142. Go操作Kafka(confluent-kafka-go库)
文章目录 Apache kafka简介开始使用Apache Kafka构建生产者构建消费者 总结 之前已经有两篇文章介绍过 Go如何操作 kafka 28.windows安装kafka,Go操作kafka示例(sarama库) 51.Go操作kafka示例(kafka-go库) Apache ka…...

spring boot(学习笔记第十九课)
spring boot(学习笔记第十九课) Spring boot的batch框架,以及Swagger3(OpenAPI)整合 学习内容: Spring boot的batch框架Spring boot的Swagger3(OpenAPI)整合 1. Spring boot batch框架 Spring Batch是什么 Spring Batch 是一个…...
docker安装 redis 并且加密开启SSL/TLS通道
拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest redis:latest要在 Docker 容器中启动 Redis 并开启 SSL/TLS 加密,需按照以下步骤修改启动命令和配置…...

什么是ARM架构?什么是X86架构?两者的区别是什么?
一、什么是ARM架构 (一)起源于发展 ARM 架构由英国剑桥的 Acorn 计算机公司开发。因市场无合适产品,Acorn 自行设计出第一款微处理器,命名为 ARM。此后 ARM 架构不断发展,1990 年为与苹果合作成立 ARM 公司࿰…...

【vscode】vscode paste image插件设置
本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候,如果想插入图片,自带的粘贴只会粘贴到当前目录下,也没有文件重命名,很不友好。 在扩展商店里面有mushan的Paste Image插件,相比自带的,更加友好一点。但…...

自定义string类
#include <iostream> #include <string> int main() { std::string str "Hello, World!"; // 使用 c_str() 将 std::string 转换为 C 风格字符串,并传递给 printf printf("The string is: %s\n", str.c_str()); // 尝试修改…...

Python | Leetcode Python题解之第387题字符串中的第一个唯一字符
题目: 题解: class Solution:def firstUniqChar(self, s: str) -> int:position dict()q collections.deque()n len(s)for i, ch in enumerate(s):if ch not in position:position[ch] iq.append((s[i], i))else:position[ch] -1while q and po…...
RocketMQ 消费时序列化报错问题分析及解决
问题背景 在2024年3月7日,系统消费 RocketMQ 消息时出现了序列化报错,错误信息显示为: java.io.InvalidClassException: com.xxx.xxx.bean.mg.GoodsChangeLogMessage; local class incompatible: stream classdesc serialVersionUID... 这是…...

全能与专精:探索未来AI模型的发展趋势与市场潜力
文章目录 每日一句正能量前言AI模型的全面评估和比较AI模型的专精化和可扩展性AI模型的合理使用和道德规范后记 每日一句正能量 一个人,如果没有经受过投资失败的痛楚,又怎么会看到绝望之后的海阔天空。很多时候,经历了人生中最艰难的事&…...
Python深度学习:【开源数据集系列】ImageNet数据集
ImageNet 是一个大规模的视觉数据集,是计算机视觉领域最重要的基准数据集之一。该数据集由普林斯顿大学和斯坦福大学的研究人员发起,于 2009 年推出。ImageNet 是用于物体分类、目标检测、图像分割、姿势估计等多种任务的通用数据集,尤其在深度学习和计算机视觉的突破性研究…...

微信小程序手写签名
微信小程序手写签名组件 该组件基于signature_pad封装,signature_pad本身是web端的插件,此处将插件代码修改为小程序端可用。 signature_pad.js /*!* Signature Pad v5.0.3 | https://github.com/szimek/signature_pad* (c) 2024 Szymon Nowak | Releas…...

Javascript 使用中点查找矩形的角(Find Corners of Rectangle using mid points)
考虑一个矩形 ABCD,我们给出了边 AD 和 BC 中点(分别为 p 和 q)的坐标以及它们的长度 L(AD BC L)。现在给定参数,我们需要打印 4 个点 A、B、C 和 D 的坐标。 例子: 输入:p (1,…...

【困难】 猿人学web第一届 第18题 jsvmp 洞察先机
文章目录 数据接口分析还原加密参数插桩调试分析日志插桩补充 python 代码 数据接口分析 数据接口 https://match.yuanrenxue.cn/match/18data 请求参数 {page: 页码, t: 时间戳, v: 加密值} 请求第一页不需要携带 t, v 参数 cookie 只需要携带 sessionid 只要 还原加密字段…...

IDEA Maven 源修改为国内阿里云镜像的正确方式
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storm…...

OpenCV 旋转矩形边界
边界矩形是用最小面积绘制的,所以它也考虑了旋转。使用的函数是**cv.minAreaRect**()。 import cv2 import numpy as npimgcv2.imread(rD:\PythonProject\thunder.jpg) img1cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) print(img.dtype) ret,threshcv2.threshold(img1,1…...

人车防撞系统安全生产方案
根据《市场监管总局关于2021~2023年全国特种设备安全状况的通告》数据显示:2023年:全国共发生特种设备事故和相关事故71起,其中死亡69人。包含叉车在内的场(厂)内专用机动车辆事故29起、死亡28人,占事故总数的40.85%、死亡人数的4…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法
使用 ROS1-Noetic 和 mavros v1.20.1, 携带经纬度海拔的话题主要有三个: /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码,来分析他们的发布过程。发现前两个话题都对应了同一…...

python基础语法Ⅰ
python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器,来进行一些算术…...