当前位置: 首页 > news >正文

dp练习【4】

最长数对链 

646. 最长数对链

给你一个由 n 个数对组成的数对数组 pairs ,其中 pairs[i] = [lefti, righti] 且 lefti < righti 。

现在,我们定义一种 跟随 关系,当且仅当 b < c 时,数对 p2 = [c, d] 才可以跟在 p1 = [a, b] 后面。我们用这种形式来构造 数对链 。

找出并返回能够形成的 最长数对链的长度 。

你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。

示例 1:

输入:pairs = [[1,2], [2,3], [3,4]]
输出:2
解释:最长的数对链是 [1,2] -> [3,4] 。

示例 2:

输入:pairs = [[1,2],[7,8],[4,5]]
输出:3
解释:最长的数对链是 [1,2] -> [4,5] -> [7,8] 。
class Solution {public int findLongestChain(int[][] pairs) {int n = pairs.length;Arrays.sort(pairs, (a, b) -> a[0] - b[0]);int[] dp = new int[n];Arrays.fill(dp, 1);for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {if (pairs[i][0] > pairs[j][1]) {// 通过i位置与前面所有的比较,然后得到当前时候最多有多少对(j到i之间最大对数)dp[i] = Math.max(dp[i], dp[j] + 1);}}}return dp[n - 1];}
}

最长定差子序列

1218. 最长定差子序列

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference 。

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

示例 1:

输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。

示例 2:

输入:arr = [1,3,5,7], difference = 1
输出:1
解释:最长的等差子序列是任意单个元素。

示例 3:

输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2
输出:4
解释:最长的等差子序列是 [7,5,3,1]。

这个题目不能用常规dp来做,会超时,比如说这样,就超时了

class Solution {public int longestSubsequence(int[] arr, int difference) {int n = arr.length;int[] dp = new int[n + 1];Arrays.fill(dp, 1);int maxLen = 1;for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (arr[i] - arr[j] == difference) {dp[i] = Math.max(dp[i], dp[j] + 1);}}maxLen = Math.max(maxLen,dp[i]);}return maxLen;}
}

 

要用哈希表来存储之前最长的重复子数组才行

class Solution {// 方法用于计算数组 arr 中具有固定差值 difference 的最长子序列长度public int longestSubsequence(int[] arr, int difference) {int ans = 0; // 初始化最长子序列的长度为 0// 创建一个大小为 40001 的整型数组 dp,用于存储动态规划的状态// 数组大小的选择是为了适应输入数据的变化范围,假设输入数据范围在 [-20000, 19999] 内int[] dp = new int[40001];// 遍历数组 arr 的每一个元素for (int num : arr) {// 为了使数组下标非负,将当前数字 num 偏移 20000 后使用作为 dp 数组的索引// dp[num + 20000] 存储了以 num 结尾的具有固定差值 difference 的最长子序列长度// dp[num + 20000 - difference] 则是前一个元素 (num - difference) 的最长子序列长度// 当前元素 num 的最长子序列长度为前一个元素的长度加 1dp[num + 20000] = dp[num + 20000 - difference] + 1;// 更新全局最长子序列长度 ans// 取当前已知的最长子序列长度和 dp[num + 20000] 中较大的值ans = Math.max(ans, dp[num + 20000]);}// 返回最长子序列的长度return ans;}
}

最长等差数列

1027. 最长等差数列

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。
class Solution {// 方法接收一个整数数组 nums 作为参数public int longestArithSeqLength(int[] nums) {int n = nums.length; // 获取数组长度// 创建一个二维数组 dp,大小为 [n][1001],用于存储动态规划的结果int[][] dp = new int[n][1001];int maxLen = 0; // 初始化最长等差数列的长度为0// 从第二个元素开始遍历数组for (int k = 1; k < n; k++) {// 从第一个元素到第k-1个元素遍历for (int j = 0; j < k; j++) {// 计算两数之差,并加上500以保证下标非负// 这里假设差值的范围是 [-500, 500],因此差值加上500后可以作为下标int d = nums[k] - nums[j] + 500;// 根据差值 d 更新 dp[k][d] 的值,即以 nums[k] 结尾且差值为 d 的等差数列的长度// dp[j][d] 表示以 nums[j] 结尾且差值为 d 的等差数列的长度// 加1是因为当前元素 nums[k] 可以与前面的等差数列形成新的等差数列dp[k][d] = dp[j][d] + 1;// 更新最长等差数列的长度maxLen = Math.max(maxLen, dp[k][d]);}}// 最终返回最长等差数列的长度,由于 dp 数组中存储的是除第一个元素外的等差数列长度,所以需要加1return maxLen + 1;}
}

腾讯面试时的算法题目

牛客上看面经,看到有人写的,在面试之后,面试官出的两道dp。自己尝试了一下,发现难度还好,属于动态规划系列中【最长递增子序列】分类和【动态规划在字符串的应用】分类中类似的题型

最长重复子数组

718. 最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100
class Solution {public int longestArithSeqLength(int[] nums) {int n=nums.length;int[][] dp=new int[n][1001];int maxLen=0;//保存结果for(int k=1;k<n;k++){for(int j=0;j<k;j++){int d=nums[k]-nums[j]+500;//统一加偏移量,使下标非负dp[k][d]=dp[j][d]+1; //根据 d 去填充dp[k][d]maxLen=Math.max(maxLen,dp[k][d]);//维护最大值}}return maxLen+1;}
}

最长公共子序列

1143. 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 
class Solution {public int longestCommonSubsequence(String text1, String text2) {int m = text1.length();int n = text2.length();int[][] dp = new int[n + 1][m + 1];for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (text1.charAt(j - 1) == text2.charAt(i - 1)) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);}}}return dp[n][m];}
}

 

每日一题

3174. 清除数字

给你一个字符串 s 。

你的任务是重复以下操作删除 所有 数字字符:

  • 删除 第一个数字字符 以及它左边 最近 的 非数字 字符。

请你返回删除所有数字字符以后剩下的字符串。

示例 1:

输入:s = "abc"

输出:"abc"

解释:

字符串中没有数字。

示例 2:

输入:s = "cb34"

输出:""

解释:

一开始,我们对 s[2] 执行操作,s 变为 "c4" 。

然后对 s[1] 执行操作,s 变为 "" 。

用栈的思想解题:

class Solution {public String clearDigits(String s) {StringBuilder res = new StringBuilder();for (char c : s.toCharArray()){if (Character.isDigit(c)) {res.deleteCharAt(res.length() - 1);} else {res.append(c);}}return res.toString();}
}

相关文章:

dp练习【4】

最长数对链 646. 最长数对链 给你一个由 n 个数对组成的数对数组 pairs &#xff0c;其中 pairs[i] [lefti, righti] 且 lefti < righti 。 现在&#xff0c;我们定义一种 跟随 关系&#xff0c;当且仅当 b < c 时&#xff0c;数对 p2 [c, d] 才可以跟在 p1 [a, b…...

php 实现推荐算法

在PHP中实现推荐算法的应用场景通常包括电商、社交媒体、内容平台等。推荐算法可以帮助用户找到与其兴趣相关的内容&#xff0c;提高用户体验和平台黏性。以下是几种常见的推荐算法及其PHP实现方式&#xff1a; 1. 基于协同过滤的推荐算法 协同过滤&#xff08;Collaborative…...

相机光学(三十六)——光圈

0.参考链接 &#xff08;1&#xff09;Hall光圈和Piris光圈的区别 &#xff08;2&#xff09;自动光圈及P-IRIS原理 1.光圈分类 Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下&#xff1a; Hall光圈&#xff1a;Hall光圈是一种传统的光电子元件&#xff0c;通…...

数据结构——树和二叉树

目录 一、树的概念 二、树结点之间的关系 三、二叉树 1、满二叉树 2、完全二叉树 四、二叉树的存储 1、顺序存储 2、链式存储 一、树的概念 如果数据和数据之间满足一对多的关系&#xff0c;将其逻辑结构称之为树 如下图&#xff1a;树的根与树的分支存在一对多的关系 将上…...

142. Go操作Kafka(confluent-kafka-go库)

文章目录 Apache kafka简介开始使用Apache Kafka构建生产者构建消费者 总结 之前已经有两篇文章介绍过 Go如何操作 kafka 28.windows安装kafka&#xff0c;Go操作kafka示例&#xff08;sarama库&#xff09; 51.Go操作kafka示例&#xff08;kafka-go库&#xff09; Apache ka…...

spring boot(学习笔记第十九课)

spring boot(学习笔记第十九课) Spring boot的batch框架&#xff0c;以及Swagger3(OpenAPI)整合 学习内容&#xff1a; Spring boot的batch框架Spring boot的Swagger3&#xff08;OpenAPI&#xff09;整合 1. Spring boot batch框架 Spring Batch是什么 Spring Batch 是一个…...

docker安装 redis 并且加密开启SSL/TLS通道

拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest redis:latest要在 Docker 容器中启动 Redis 并开启 SSL/TLS 加密&#xff0c;需按照以下步骤修改启动命令和配置…...

什么是ARM架构?什么是X86架构?两者的区别是什么?

一、什么是ARM架构 &#xff08;一&#xff09;起源于发展 ARM 架构由英国剑桥的 Acorn 计算机公司开发。因市场无合适产品&#xff0c;Acorn 自行设计出第一款微处理器&#xff0c;命名为 ARM。此后 ARM 架构不断发展&#xff0c;1990 年为与苹果合作成立 ARM 公司&#xff0…...

【vscode】vscode paste image插件设置

本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候&#xff0c;如果想插入图片&#xff0c;自带的粘贴只会粘贴到当前目录下&#xff0c;也没有文件重命名&#xff0c;很不友好。 在扩展商店里面有mushan的Paste Image插件&#xff0c;相比自带的&#xff0c;更加友好一点。但…...

自定义string类

#include <iostream> #include <string> int main() { std::string str "Hello, World!"; // 使用 c_str() 将 std::string 转换为 C 风格字符串&#xff0c;并传递给 printf printf("The string is: %s\n", str.c_str()); // 尝试修改…...

Python | Leetcode Python题解之第387题字符串中的第一个唯一字符

题目&#xff1a; 题解&#xff1a; class Solution:def firstUniqChar(self, s: str) -> int:position dict()q collections.deque()n len(s)for i, ch in enumerate(s):if ch not in position:position[ch] iq.append((s[i], i))else:position[ch] -1while q and po…...

RocketMQ 消费时序列化报错问题分析及解决

问题背景 在2024年3月7日&#xff0c;系统消费 RocketMQ 消息时出现了序列化报错&#xff0c;错误信息显示为&#xff1a; java.io.InvalidClassException: com.xxx.xxx.bean.mg.GoodsChangeLogMessage; local class incompatible: stream classdesc serialVersionUID... 这是…...

全能与专精:探索未来AI模型的发展趋势与市场潜力

文章目录 每日一句正能量前言AI模型的全面评估和比较AI模型的专精化和可扩展性AI模型的合理使用和道德规范后记 每日一句正能量 一个人&#xff0c;如果没有经受过投资失败的痛楚&#xff0c;又怎么会看到绝望之后的海阔天空。很多时候&#xff0c;经历了人生中最艰难的事&…...

Python深度学习:【开源数据集系列】ImageNet数据集

ImageNet 是一个大规模的视觉数据集,是计算机视觉领域最重要的基准数据集之一。该数据集由普林斯顿大学和斯坦福大学的研究人员发起,于 2009 年推出。ImageNet 是用于物体分类、目标检测、图像分割、姿势估计等多种任务的通用数据集,尤其在深度学习和计算机视觉的突破性研究…...

微信小程序手写签名

微信小程序手写签名组件 该组件基于signature_pad封装&#xff0c;signature_pad本身是web端的插件&#xff0c;此处将插件代码修改为小程序端可用。 signature_pad.js /*!* Signature Pad v5.0.3 | https://github.com/szimek/signature_pad* (c) 2024 Szymon Nowak | Releas…...

Javascript 使用中点查找矩形的角(Find Corners of Rectangle using mid points)

考虑一个矩形 ABCD&#xff0c;我们给出了边 AD 和 BC 中点&#xff08;分别为 p 和 q&#xff09;的坐标以及它们的长度 L&#xff08;AD BC L&#xff09;。现在给定参数&#xff0c;我们需要打印 4 个点 A、B、C 和 D 的坐标。 例子&#xff1a; 输入&#xff1a;p (1,…...

【困难】 猿人学web第一届 第18题 jsvmp 洞察先机

文章目录 数据接口分析还原加密参数插桩调试分析日志插桩补充 python 代码 数据接口分析 数据接口 https://match.yuanrenxue.cn/match/18data 请求参数 {page: 页码, t: 时间戳, v: 加密值} 请求第一页不需要携带 t, v 参数 cookie 只需要携带 sessionid 只要 还原加密字段…...

IDEA Maven 源修改为国内阿里云镜像的正确方式

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storm…...

OpenCV 旋转矩形边界

边界矩形是用最小面积绘制的&#xff0c;所以它也考虑了旋转。使用的函数是**cv.minAreaRect**()。 import cv2 import numpy as npimgcv2.imread(rD:\PythonProject\thunder.jpg) img1cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) print(img.dtype) ret,threshcv2.threshold(img1,1…...

人车防撞系统安全生产方案

根据《市场监管总局关于2021~2023年全国特种设备安全状况的通告》数据显示&#xff1a;2023年&#xff1a;全国共发生特种设备事故和相关事故71起&#xff0c;其中死亡69人。包含叉车在内的场(厂)内专用机动车辆事故29起、死亡28人&#xff0c;占事故总数的40.85%、死亡人数的4…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

基于单片机的宠物屋智能系统设计与实现(论文+源码)

本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢&#xff0c;连接红外测温传感器&#xff0c;可实时精准捕捉宠物体温变化&#xff0c;以便及时发现健康异常&#xff1b;水位检测传感器时刻监测饮用水余量&#xff0c;防止宠物…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...

虚拟机网络不通的问题(这里以win10的问题为主,模式NAT)

当我们网关配置好了&#xff0c;DNS也配置好了&#xff0c;最后在虚拟机里还是无法访问百度的网址。 第一种情况&#xff1a; 我们先考虑一下&#xff0c;网关的IP是否和虚拟机编辑器里的IP一样不&#xff0c;如果不一样需要更改一下&#xff0c;因为我们访问百度需要从物理机…...