当前位置: 首页 > news >正文

dp练习【4】

最长数对链 

646. 最长数对链

给你一个由 n 个数对组成的数对数组 pairs ,其中 pairs[i] = [lefti, righti] 且 lefti < righti 。

现在,我们定义一种 跟随 关系,当且仅当 b < c 时,数对 p2 = [c, d] 才可以跟在 p1 = [a, b] 后面。我们用这种形式来构造 数对链 。

找出并返回能够形成的 最长数对链的长度 。

你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。

示例 1:

输入:pairs = [[1,2], [2,3], [3,4]]
输出:2
解释:最长的数对链是 [1,2] -> [3,4] 。

示例 2:

输入:pairs = [[1,2],[7,8],[4,5]]
输出:3
解释:最长的数对链是 [1,2] -> [4,5] -> [7,8] 。
class Solution {public int findLongestChain(int[][] pairs) {int n = pairs.length;Arrays.sort(pairs, (a, b) -> a[0] - b[0]);int[] dp = new int[n];Arrays.fill(dp, 1);for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {if (pairs[i][0] > pairs[j][1]) {// 通过i位置与前面所有的比较,然后得到当前时候最多有多少对(j到i之间最大对数)dp[i] = Math.max(dp[i], dp[j] + 1);}}}return dp[n - 1];}
}

最长定差子序列

1218. 最长定差子序列

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference 。

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

示例 1:

输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。

示例 2:

输入:arr = [1,3,5,7], difference = 1
输出:1
解释:最长的等差子序列是任意单个元素。

示例 3:

输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2
输出:4
解释:最长的等差子序列是 [7,5,3,1]。

这个题目不能用常规dp来做,会超时,比如说这样,就超时了

class Solution {public int longestSubsequence(int[] arr, int difference) {int n = arr.length;int[] dp = new int[n + 1];Arrays.fill(dp, 1);int maxLen = 1;for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (arr[i] - arr[j] == difference) {dp[i] = Math.max(dp[i], dp[j] + 1);}}maxLen = Math.max(maxLen,dp[i]);}return maxLen;}
}

 

要用哈希表来存储之前最长的重复子数组才行

class Solution {// 方法用于计算数组 arr 中具有固定差值 difference 的最长子序列长度public int longestSubsequence(int[] arr, int difference) {int ans = 0; // 初始化最长子序列的长度为 0// 创建一个大小为 40001 的整型数组 dp,用于存储动态规划的状态// 数组大小的选择是为了适应输入数据的变化范围,假设输入数据范围在 [-20000, 19999] 内int[] dp = new int[40001];// 遍历数组 arr 的每一个元素for (int num : arr) {// 为了使数组下标非负,将当前数字 num 偏移 20000 后使用作为 dp 数组的索引// dp[num + 20000] 存储了以 num 结尾的具有固定差值 difference 的最长子序列长度// dp[num + 20000 - difference] 则是前一个元素 (num - difference) 的最长子序列长度// 当前元素 num 的最长子序列长度为前一个元素的长度加 1dp[num + 20000] = dp[num + 20000 - difference] + 1;// 更新全局最长子序列长度 ans// 取当前已知的最长子序列长度和 dp[num + 20000] 中较大的值ans = Math.max(ans, dp[num + 20000]);}// 返回最长子序列的长度return ans;}
}

最长等差数列

1027. 最长等差数列

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。
class Solution {// 方法接收一个整数数组 nums 作为参数public int longestArithSeqLength(int[] nums) {int n = nums.length; // 获取数组长度// 创建一个二维数组 dp,大小为 [n][1001],用于存储动态规划的结果int[][] dp = new int[n][1001];int maxLen = 0; // 初始化最长等差数列的长度为0// 从第二个元素开始遍历数组for (int k = 1; k < n; k++) {// 从第一个元素到第k-1个元素遍历for (int j = 0; j < k; j++) {// 计算两数之差,并加上500以保证下标非负// 这里假设差值的范围是 [-500, 500],因此差值加上500后可以作为下标int d = nums[k] - nums[j] + 500;// 根据差值 d 更新 dp[k][d] 的值,即以 nums[k] 结尾且差值为 d 的等差数列的长度// dp[j][d] 表示以 nums[j] 结尾且差值为 d 的等差数列的长度// 加1是因为当前元素 nums[k] 可以与前面的等差数列形成新的等差数列dp[k][d] = dp[j][d] + 1;// 更新最长等差数列的长度maxLen = Math.max(maxLen, dp[k][d]);}}// 最终返回最长等差数列的长度,由于 dp 数组中存储的是除第一个元素外的等差数列长度,所以需要加1return maxLen + 1;}
}

腾讯面试时的算法题目

牛客上看面经,看到有人写的,在面试之后,面试官出的两道dp。自己尝试了一下,发现难度还好,属于动态规划系列中【最长递增子序列】分类和【动态规划在字符串的应用】分类中类似的题型

最长重复子数组

718. 最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100
class Solution {public int longestArithSeqLength(int[] nums) {int n=nums.length;int[][] dp=new int[n][1001];int maxLen=0;//保存结果for(int k=1;k<n;k++){for(int j=0;j<k;j++){int d=nums[k]-nums[j]+500;//统一加偏移量,使下标非负dp[k][d]=dp[j][d]+1; //根据 d 去填充dp[k][d]maxLen=Math.max(maxLen,dp[k][d]);//维护最大值}}return maxLen+1;}
}

最长公共子序列

1143. 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 
class Solution {public int longestCommonSubsequence(String text1, String text2) {int m = text1.length();int n = text2.length();int[][] dp = new int[n + 1][m + 1];for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (text1.charAt(j - 1) == text2.charAt(i - 1)) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);}}}return dp[n][m];}
}

 

每日一题

3174. 清除数字

给你一个字符串 s 。

你的任务是重复以下操作删除 所有 数字字符:

  • 删除 第一个数字字符 以及它左边 最近 的 非数字 字符。

请你返回删除所有数字字符以后剩下的字符串。

示例 1:

输入:s = "abc"

输出:"abc"

解释:

字符串中没有数字。

示例 2:

输入:s = "cb34"

输出:""

解释:

一开始,我们对 s[2] 执行操作,s 变为 "c4" 。

然后对 s[1] 执行操作,s 变为 "" 。

用栈的思想解题:

class Solution {public String clearDigits(String s) {StringBuilder res = new StringBuilder();for (char c : s.toCharArray()){if (Character.isDigit(c)) {res.deleteCharAt(res.length() - 1);} else {res.append(c);}}return res.toString();}
}

相关文章:

dp练习【4】

最长数对链 646. 最长数对链 给你一个由 n 个数对组成的数对数组 pairs &#xff0c;其中 pairs[i] [lefti, righti] 且 lefti < righti 。 现在&#xff0c;我们定义一种 跟随 关系&#xff0c;当且仅当 b < c 时&#xff0c;数对 p2 [c, d] 才可以跟在 p1 [a, b…...

php 实现推荐算法

在PHP中实现推荐算法的应用场景通常包括电商、社交媒体、内容平台等。推荐算法可以帮助用户找到与其兴趣相关的内容&#xff0c;提高用户体验和平台黏性。以下是几种常见的推荐算法及其PHP实现方式&#xff1a; 1. 基于协同过滤的推荐算法 协同过滤&#xff08;Collaborative…...

相机光学(三十六)——光圈

0.参考链接 &#xff08;1&#xff09;Hall光圈和Piris光圈的区别 &#xff08;2&#xff09;自动光圈及P-IRIS原理 1.光圈分类 Hall光圈和Piris光圈是两种不同的光圈技术。它们之间的区别如下&#xff1a; Hall光圈&#xff1a;Hall光圈是一种传统的光电子元件&#xff0c;通…...

数据结构——树和二叉树

目录 一、树的概念 二、树结点之间的关系 三、二叉树 1、满二叉树 2、完全二叉树 四、二叉树的存储 1、顺序存储 2、链式存储 一、树的概念 如果数据和数据之间满足一对多的关系&#xff0c;将其逻辑结构称之为树 如下图&#xff1a;树的根与树的分支存在一对多的关系 将上…...

142. Go操作Kafka(confluent-kafka-go库)

文章目录 Apache kafka简介开始使用Apache Kafka构建生产者构建消费者 总结 之前已经有两篇文章介绍过 Go如何操作 kafka 28.windows安装kafka&#xff0c;Go操作kafka示例&#xff08;sarama库&#xff09; 51.Go操作kafka示例&#xff08;kafka-go库&#xff09; Apache ka…...

spring boot(学习笔记第十九课)

spring boot(学习笔记第十九课) Spring boot的batch框架&#xff0c;以及Swagger3(OpenAPI)整合 学习内容&#xff1a; Spring boot的batch框架Spring boot的Swagger3&#xff08;OpenAPI&#xff09;整合 1. Spring boot batch框架 Spring Batch是什么 Spring Batch 是一个…...

docker安装 redis 并且加密开启SSL/TLS通道

拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/redis:latest redis:latest要在 Docker 容器中启动 Redis 并开启 SSL/TLS 加密&#xff0c;需按照以下步骤修改启动命令和配置…...

什么是ARM架构?什么是X86架构?两者的区别是什么?

一、什么是ARM架构 &#xff08;一&#xff09;起源于发展 ARM 架构由英国剑桥的 Acorn 计算机公司开发。因市场无合适产品&#xff0c;Acorn 自行设计出第一款微处理器&#xff0c;命名为 ARM。此后 ARM 架构不断发展&#xff0c;1990 年为与苹果合作成立 ARM 公司&#xff0…...

【vscode】vscode paste image插件设置

本文首发于 ❄️慕雪的寒舍 vscode编辑md文件的时候&#xff0c;如果想插入图片&#xff0c;自带的粘贴只会粘贴到当前目录下&#xff0c;也没有文件重命名&#xff0c;很不友好。 在扩展商店里面有mushan的Paste Image插件&#xff0c;相比自带的&#xff0c;更加友好一点。但…...

自定义string类

#include <iostream> #include <string> int main() { std::string str "Hello, World!"; // 使用 c_str() 将 std::string 转换为 C 风格字符串&#xff0c;并传递给 printf printf("The string is: %s\n", str.c_str()); // 尝试修改…...

Python | Leetcode Python题解之第387题字符串中的第一个唯一字符

题目&#xff1a; 题解&#xff1a; class Solution:def firstUniqChar(self, s: str) -> int:position dict()q collections.deque()n len(s)for i, ch in enumerate(s):if ch not in position:position[ch] iq.append((s[i], i))else:position[ch] -1while q and po…...

RocketMQ 消费时序列化报错问题分析及解决

问题背景 在2024年3月7日&#xff0c;系统消费 RocketMQ 消息时出现了序列化报错&#xff0c;错误信息显示为&#xff1a; java.io.InvalidClassException: com.xxx.xxx.bean.mg.GoodsChangeLogMessage; local class incompatible: stream classdesc serialVersionUID... 这是…...

全能与专精:探索未来AI模型的发展趋势与市场潜力

文章目录 每日一句正能量前言AI模型的全面评估和比较AI模型的专精化和可扩展性AI模型的合理使用和道德规范后记 每日一句正能量 一个人&#xff0c;如果没有经受过投资失败的痛楚&#xff0c;又怎么会看到绝望之后的海阔天空。很多时候&#xff0c;经历了人生中最艰难的事&…...

Python深度学习:【开源数据集系列】ImageNet数据集

ImageNet 是一个大规模的视觉数据集,是计算机视觉领域最重要的基准数据集之一。该数据集由普林斯顿大学和斯坦福大学的研究人员发起,于 2009 年推出。ImageNet 是用于物体分类、目标检测、图像分割、姿势估计等多种任务的通用数据集,尤其在深度学习和计算机视觉的突破性研究…...

微信小程序手写签名

微信小程序手写签名组件 该组件基于signature_pad封装&#xff0c;signature_pad本身是web端的插件&#xff0c;此处将插件代码修改为小程序端可用。 signature_pad.js /*!* Signature Pad v5.0.3 | https://github.com/szimek/signature_pad* (c) 2024 Szymon Nowak | Releas…...

Javascript 使用中点查找矩形的角(Find Corners of Rectangle using mid points)

考虑一个矩形 ABCD&#xff0c;我们给出了边 AD 和 BC 中点&#xff08;分别为 p 和 q&#xff09;的坐标以及它们的长度 L&#xff08;AD BC L&#xff09;。现在给定参数&#xff0c;我们需要打印 4 个点 A、B、C 和 D 的坐标。 例子&#xff1a; 输入&#xff1a;p (1,…...

【困难】 猿人学web第一届 第18题 jsvmp 洞察先机

文章目录 数据接口分析还原加密参数插桩调试分析日志插桩补充 python 代码 数据接口分析 数据接口 https://match.yuanrenxue.cn/match/18data 请求参数 {page: 页码, t: 时间戳, v: 加密值} 请求第一页不需要携带 t, v 参数 cookie 只需要携带 sessionid 只要 还原加密字段…...

IDEA Maven 源修改为国内阿里云镜像的正确方式

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storm…...

OpenCV 旋转矩形边界

边界矩形是用最小面积绘制的&#xff0c;所以它也考虑了旋转。使用的函数是**cv.minAreaRect**()。 import cv2 import numpy as npimgcv2.imread(rD:\PythonProject\thunder.jpg) img1cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) print(img.dtype) ret,threshcv2.threshold(img1,1…...

人车防撞系统安全生产方案

根据《市场监管总局关于2021~2023年全国特种设备安全状况的通告》数据显示&#xff1a;2023年&#xff1a;全国共发生特种设备事故和相关事故71起&#xff0c;其中死亡69人。包含叉车在内的场(厂)内专用机动车辆事故29起、死亡28人&#xff0c;占事故总数的40.85%、死亡人数的4…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

Vue3 PC端 UI组件库我更推荐Naive UI

一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用&#xff0c;前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率&#xff0c;还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库&#xff08;Naive UI、Element …...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法

使用 ROS1-Noetic 和 mavros v1.20.1&#xff0c; 携带经纬度海拔的话题主要有三个&#xff1a; /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码&#xff0c;来分析他们的发布过程。发现前两个话题都对应了同一…...

python基础语法Ⅰ

python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器&#xff0c;来进行一些算术…...