文件操作与隐写
一、文件类型的识别
1、文件头完好情况:
(1)file命令
使用file命令识别:识别出file.doc为jpg类型

(2)winhex
通过winhex工具查看文件头类型,根据文件头部内容去判断文件的类型

eg:JPG类型

(3)notepad++
下载HEXeditor插件,查看文件的头部信息,和010editor,winhex原理相同

(4)0101editor
个人推荐使用这个,因为包含好用的模板,不用在记忆宽度、高度、CRC的具体位置

2、文件头部损坏情况:
场景:使用file命令无法显示文件类型,只显示data,说明文件头部被破坏,需要修复
(1)使用010editor等工具结合具体情况进行修复

二、文件分离操作
1、binwalk命令
分析文件 binwalk filename分离文件 binwalk -e filename分离分拣 binwalk filename -T png
2、foremost命令
场景:binwalk无法分离出文件、可以尝试使用foremost进行分离文件
foremost filename -o 分离后的保存位置
3、dd命令
场景:binwalk和foremost都无法进行分离文件
解释:bs就是块的大小、count就是块的个数、skip就是跳过多少个块
dd if=源文件 of=目标文件名 bs=1 skip=开始分离的字节数
eg1:假设1.txt 内容为1234567890dd if=1.txt of=2.txt bs=5 count=1 2.txt当中的内容为12345dd if=1.txt of=3.txt bs=5 count=1 skip=13.txt内容为67890,skip就是跳过第一块
eg2:

想要分离出AC3zlib文件(zlib文件为图片数据压缩文件),需要输入
dd if=2.png of=3 bs=1 skip=85

4、winhex手动分离
结合binwalk;直接将想要的数据复制出来(很简单,和上述dd原理一样)
三、文件合并
1、Linux下的文件合并
考点:题目可能会给出一个md5值,让你合并文件,只有按照一定的次序合并,MD5才能够吻合
cat 1.txt 2.txt 3.txt 4.txt >1.jpg将1.txt,2.txt,3.txt.4.txt合并为1jpg校验md5:md5sum1.jpg
2、windows下的文件合并
copy /B 1.txt+2.txt+3.txt 1.jpg校验md5:certutil -hashfile 1.jpg
相关文章:
文件操作与隐写
一、文件类型的识别 1、文件头完好情况: (1)file命令 使用file命令识别:识别出file.doc为jpg类型 (2)winhex 通过winhex工具查看文件头类型,根据文件头部内容去判断文件的类型 eg:JPG类型 &a…...
SQLException: No Suitable Driver Found - 完美解决方法详解
🚨 SQLException: No Suitable Driver Found - 完美解决方法详解 🚨 **🚨 SQLException: No Suitable Driver Found - 完美解决方法详解 🚨****摘要 📝****引言 🎯****正文 📚****1. 问题概述 ❗…...
pycharm破解教程
下载pycharm https://www.jetbrains.com/pycharm/download/other.html 破解网站 https://hardbin.com/ipfs/bafybeih65no5dklpqfe346wyeiak6wzemv5d7z2ya7nssdgwdz4xrmdu6i/ 点击下载破解程序 安装pycharm 自己选择安装路径 安装完成后运行破解程序 等到Done图标出现 选择Ac…...
如何使用 ef core 的 code first(fluent api)模式实现自定义类型转换器?
如何使用 ef core 的 code first 模式实现自定义类型转换器 前言 1. 项目结构2. 实现步骤2.1 定义转换器2.1.1 DateTime 转换器2.1.2 JsonDocument 转换器 2.2 创建实体类并配置数据结构类型2.3 定义 Utility 工具类2.4 配置 DbContext2.4.1 使用 EF Core 配置 DbContext 的两种…...
MapSet之相关概念
系列文章: 1. 先导片--Map&Set之二叉搜索树 2. Map&Set之相关概念 目录 1.搜索 1.1 概念和场景 1.2 模型 2.Map的使用 2.1 关于Map的说明 2.2 关于Map.Entry的说明 2.3 Map的常用方法说明 3.Set的说明 3.1关于Set说明 3.2 常见方法说明 1.搜…...
【大数据】浅谈Pyecharts:数据可视化的强大工具
文章目录 一、引言二、Pyecharts是什么三、Pyecharts的发展历程四、如何使用Pyecharts1. 安装Pyecharts2. 创建图表(1)导入Pyecharts模块:(2)创建图表实例:(3)添加数据:&…...
[深度学习][LLM]:浮点数怎么表示,什么是混合精度训练?
混合精度训练 混合精度训练1. 浮点表示法:[IEEE](https://zh.wikipedia.org/wiki/电气电子工程师协会)二进制浮点数算术标准(IEEE 754)1.1 浮点数剖析1.2 举例说明例子 1:例子 2: 1.3 浮点数比较1.4 浮点数的舍入 2. 混合精度训练2.1 为什么需…...
openssl双向认证自签名证书生成
编写配置文件openssl.cnf [ req ] distinguished_name req_distinguished_name req_extensions req_ext[ req_distinguished_name ] countryName Country Name (2 letter code) countryName_default US stateOrProvinceName State or Province Name…...
如何使用 Python 读取 Excel 文件:从零开始的超详细教程
“日出东海落西山 愁也一天 喜也一天 遇事不钻牛角尖” 文章目录 前言文章有误敬请斧正 不胜感恩!||Day03为什么要用 Python 读取 Excel 文件?准备工作:安装所需工具安装 Python安装 Pandas安装 openpyxl 使用 Pandas 读取 Excel 文件什么是 …...
仕考网:公务员笔试和面试哪个难?
公务员笔试和面试哪个难?二者之间考察的方向不同,难度也是不同的。 笔试部分因其广泛的知识点和有限的考试时间显得难度更高一些,在笔试环节中,考生需在有限的时间内应对各种问题,而且同时还要面对激烈的竞争,在众多…...
C++知识点总结(55):时间优化
时间优化 一、调试方法1. 输出调试2. 构造样例 二、时间优化1. 前缀和1.1 概念1.2 例题Ⅰ 区间最多数码Ⅱ 双字母字符串Ⅲ Wandering...Ⅳ 数对数目 2. 排序例题选择排序过程 一、调试方法 1. 输出调试 cout 是一个强大的调试工具,可以帮助我们查看程序的状态和变…...
GitHub每日最火火火项目(9.7)
项目名称:polarsource / polar 项目介绍:polar 是一个开源的项目,它是 Lemon Squeezy 的替代方案,具有更优惠的价格。该项目旨在让开发者能够凭借自己的热情进行编码并获得报酬。通过使用 polar,开发者可以更轻松地实现…...
11Python的Pandas:可视化
Pandas本身并没有直接的可视化功能,但它与其他Python库(如Matplotlib和Seaborn)无缝集成,允许你快速创建各种图表和可视化。这里是一些使用Pandas数据进行可视化的常见方法: 1. 使用Matplotlib Pandas中的plot()方法…...
【周易哲学】生辰八字入门讲解(二)
😊你好,我是小航,一个正在变秃、变强的文艺倾年。 🔔本文讲解【周易哲学】生辰八字入门讲解,期待与你一同探索、学习、进步,一起卷起来叭! 目录 十神十神判断十神类象十神与五行案例 地支藏干藏…...
传统CV算法——基于Opencv的多目标追踪算法
基于 OpenCV 的跟踪算法有多种,每种算法都有其特定的应用场景和优缺点。以下是一些常见的基于 OpenCV 的目标跟踪算法: 1. BOOSTING 跟踪器 描述:基于 AdaBoost 算法的跟踪器。它是一种早期的跟踪算法,使用的是基于弱分类器的强…...
人生苦短我用Python excel转csv
人生苦短我用Python excel转csv 前言准备工作pandas库主要类和方法ExcelFile 类DataFrame 类read_excel 函数to_csv 函数 示例 前言 Excel 文件和csv文件都是常用的电子表格文件格式,其中csv格式更便于用于数据交换和处理。本文使用pandas库将Excel文件转化为csv文…...
Web2和Web3笔记
KimiAI: Web2和Web3是互联网发展的不同阶段,它们代表了不同的技术、理念和用户交互方式。 Web2: Web2通常指的是第二代互联网,它始于2000年代中期,以用户生成内容和社交网络的兴起为标志。 在Web2中,用户不仅是内容的消…...
单元测试 Mock不Mock?
文章目录 前言单元测试没必要?Mock不Mock?什么是Mock?Mock的意义何在? 如何Mock?应该Mock什么?Mock 编写示例 总结 前言 前段时间,我们团队就单元测试是否采用 Mock 进行了一番交流,各有各的说法。本文就单元测试 Mock不Mock…...
常用排序算法(上)
目录 前言: 1.排序的概念及其运用 1.1排序的概念 1.2排序运用 1.3 常见的排序算法 2.常见排序算法的实现 2.1 堆排序 2.1 1 向下调整算法 2.1 2 建堆 2.1 3 排序 2.2 插入排序 2.1.1基本思想: 2.1.2直接插入排序: 2.1.3 插…...
【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(二十六)
本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》:python零基础入门学习 《python运维脚本》: python运维脚本实践 《shell》:shell学习 《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战 《k8…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
