人生苦短我用Python excel转csv
人生苦短我用Python excel转csv
- 前言
- 准备工作
- pandas库
- 主要类和方法
- ExcelFile 类
- DataFrame 类
- read_excel 函数
- to_csv 函数
- 示例
前言
Excel
文件和csv
文件都是常用的电子表格文件格式,其中csv
格式更便于用于数据交换和处理。本文使用pandas
库将Excel
文件转化为csv
文件。
准备工作
pip install pandas
pip install openpyxl
pandas库
-
csv
库是Python
标准库的一部分,提供了基本的csv
文件读写功能。它不能直接支持读取Excel
文件。 -
要读取
Excel
文件,通常需要使用pandas
库。以下是来自官网的介绍:
pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.
- 在读取不同文件格式所需要的
engine
。 openpyxl
是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的Python
库。支持通过Python
代码创建、修改和读取Excel
文件,而无需依赖于 Microsoft Excel 应用程序。
"""
engine : {{'openpyxl', 'calamine', 'odf', 'pyxlsb', 'xlrd'}}, default NoneIf io is not a buffer or path, this must be set to identify io.Engine compatibility :- ``openpyxl`` supports newer Excel file formats.- ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)and OpenDocument (.ods) file formats.- ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).- ``pyxlsb`` supports Binary Excel files.- ``xlrd`` supports old-style Excel files (.xls).When ``engine=None``, the following logic will be used to determine the engine:- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),then `odf <https://pypi.org/project/odfpy/>`_ will be used.- Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used.- Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used.- Otherwise ``openpyxl`` will be used.
"""
主要类和方法
pandas
库中ExcelFile
类主要用于读取Excel
文件,DataFrame
类用于表示和操作数据。
ExcelFile 类
ExcelFile
类用于处理Excel
文件,封装了解析和读取Excel
文件的操作。- 支持查看
Excel
文件中的工作表名称,并读取特定的工作表。 - 支持读取
Excel
文件中的多个工作表,并将每个工作表转换为一个DataFrame
对象。
class ExcelFile:def __init__(self,path_or_buffer,engine: str | None = None,storage_options: StorageOptions | None = None,engine_kwargs: dict | None = None,) -> None:@propertydef sheet_names(self):return self._reader.sheet_names
DataFrame 类
DataFrame
类用于表示二维的、大小可变、潜在异构的表格数据。- 可以包含多种数据类型的列,如整数、浮点数、字符串等。
- 可以进行各种数据操作,如选择、过滤、修改、合并、分组、排序等。
read_excel 函数
pandas
库read_excel
函数,用于从 Excel 文件中读取数据并将其转换为DataFrame
对象。- 支持多种参数来处理不同的 Excel 文件格式和内容。
def read_excel(io,sheet_name: str | int | list[IntStrT] | None = 0,*,header: int | Sequence[int] | None = 0,names: SequenceNotStr[Hashable] | range | None = None,index_col: int | str | Sequence[int] | None = None,usecols: int| str| Sequence[int]| Sequence[str]| Callable[[str], bool]| None = None,dtype: DtypeArg | None = None,engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = None,converters: dict[str, Callable] | dict[int, Callable] | None = None,true_values: Iterable[Hashable] | None = None,false_values: Iterable[Hashable] | None = None,skiprows: Sequence[int] | int | Callable[[int], object] | None = None,nrows: int | None = None,na_values=None,keep_default_na: bool = True,na_filter: bool = True,verbose: bool = False,parse_dates: list | dict | bool = False,date_parser: Callable | lib.NoDefault = lib.no_default,date_format: dict[Hashable, str] | str | None = None,thousands: str | None = None,decimal: str = ".",comment: str | None = None,skipfooter: int = 0,storage_options: StorageOptions | None = None,dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,engine_kwargs: dict | None = None,
) -> DataFrame | dict[IntStrT, DataFrame]:
- 常用参数
参数 | 说明 | 默认值 |
---|---|---|
io | Excel 文件的路径或文件对象 | |
sheet_name | 要读取的工作表名称或索引。 可以是字符串(工作表名称)、整数(工作表索引)、列表(多个工作表)或 None (所有工作表) | 默认为 0 (第一个工作表) |
header | 指定哪一行作为列名 | 默认为 0 (第一行) |
index_col | 指定哪一列作为行索引。可以是整数或列名 | |
usecols | 指定要读取的列。可以是列索引、列名或列范围。 | |
dtype | 指定列的数据类型。可以是字典,键为列名,值为数据类型。 | |
skiprows | 跳过文件开头的一些行。可以是整数或列表。 | |
nrows | 要读取的行数。 |
to_csv 函数
DataFrame
对象提供了一个非常方便的方法to_csv
,用于将DataFrame
中的数据写入 CSV 文件。
def to_csv(self,path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None,sep: str = ",",na_rep: str = "",float_format: str | Callable | None = None,columns: Sequence[Hashable] | None = None,header: bool_t | list[str] = True,index: bool_t = True,index_label: IndexLabel | None = None,mode: str = "w",encoding: str | None = None,compression: CompressionOptions = "infer",quoting: int | None = None,quotechar: str = '"',lineterminator: str | None = None,chunksize: int | None = None,date_format: str | None = None,doublequote: bool_t = True,escapechar: str | None = None,decimal: str = ".",errors: OpenFileErrors = "strict",storage_options: StorageOptions | None = None,) -> str | None:
- 常用参数
参数 | 说明 | 默认值 |
---|---|---|
path_or_buf | 输出文件的路径或文件对象。 如果为 None ,则返回 CSV 字符串。 | None |
sep | 分隔符 | 默认为逗号 , |
index | 是否写入行索引 | 默认为 True |
header | 是否写入列名 | 默认为 True |
columns | 指定要写入的列 | 默认为所有列 |
encoding | 指定编码格式 | 默认为 utf-8 |
示例
实现很简单:
- 使用
pandas
库读取Excel
文件; - 读取工作表并将其转换为
DataFrame
对象; - 将
DataFrame
写入csv
文件。
import osimport pandas as pddef export_csv(input_file, output_path):# 创建ExcelFile对象with pd.ExcelFile(input_file) as xls:# 获取工作表名称列表for i, sheet_name in enumerate(xls.sheet_names):# 读取工作表并转换为DataFramedf = pd.read_excel(xls, sheet_name=sheet_name)output_file = os.path.join(output_path, f'{i + 1}-{sheet_name}.csv')# 将DataFrame中的数据写入CSV文件。df.to_csv(output_file, index=False)
相关文章:
人生苦短我用Python excel转csv
人生苦短我用Python excel转csv 前言准备工作pandas库主要类和方法ExcelFile 类DataFrame 类read_excel 函数to_csv 函数 示例 前言 Excel 文件和csv文件都是常用的电子表格文件格式,其中csv格式更便于用于数据交换和处理。本文使用pandas库将Excel文件转化为csv文…...
Web2和Web3笔记
KimiAI: Web2和Web3是互联网发展的不同阶段,它们代表了不同的技术、理念和用户交互方式。 Web2: Web2通常指的是第二代互联网,它始于2000年代中期,以用户生成内容和社交网络的兴起为标志。 在Web2中,用户不仅是内容的消…...

单元测试 Mock不Mock?
文章目录 前言单元测试没必要?Mock不Mock?什么是Mock?Mock的意义何在? 如何Mock?应该Mock什么?Mock 编写示例 总结 前言 前段时间,我们团队就单元测试是否采用 Mock 进行了一番交流,各有各的说法。本文就单元测试 Mock不Mock…...

常用排序算法(上)
目录 前言: 1.排序的概念及其运用 1.1排序的概念 1.2排序运用 1.3 常见的排序算法 2.常见排序算法的实现 2.1 堆排序 2.1 1 向下调整算法 2.1 2 建堆 2.1 3 排序 2.2 插入排序 2.1.1基本思想: 2.1.2直接插入排序: 2.1.3 插…...
【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(二十六)
本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》:python零基础入门学习 《python运维脚本》: python运维脚本实践 《shell》:shell学习 《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战 《k8…...
小程序的页面跳转方式
102. 小程序的页面跳转方式 小程序是一种快速发展的应用形式,为用户提供了便捷的功能和交互体验。其中,页面跳转是小程序中常用的功能之一,本文将介绍小程序的页面跳转方式,并提供代码示例,帮助读者更好地理解和实现页…...
第 21 章 DOM 操作表格及样式
第 21 章 DOM 操作表格及样式 1.操作表格 2.操作样式 DOM 在操作生成 HTML 上,还是比较简明的。不过,由于浏览器总是存在兼容和陷阱,导致最终的操作就不是那么简单方便了。本章主要了解一下 DOM 操作表格和样式的一些知识。 一࿰…...

vc-align源码分析 -- ant-design-vue系列
vc-align源码分析 源码地址:https://github.com/vueComponent/ant-design-vue/tree/main/components/vc-align 1 基础代码 1.1 名词约定 需要对齐的节点叫source,对齐的目标叫target。 1.2 props 提供了两个参数: align:对…...

计算机网络(四) —— 简单Tcp网络程序
目录 一,服务器初始化 1.0 部分文件代码 1.1 关于Tcp协议 1.2 创建和绑定套接字 1.3 监听 二,服务器启动 2.1 获取连接 2.2 提供服务 2.3 客户端启动源文件 Main.cc 二,客户端编写 2.1 关于Tcp客户端 2.2 客户端代码 2.3 效果…...

简单的Linux Ftp服务搭建
简单的Linux FTP服务搭建 1.需求 公司有一个esb文件传输代理,其中我们程序有文件传输功能,需要将本地文件传输到esb文件代理服务器上,传输成功之后发送http请求,告知esb将固定文件进行传输到对应外围其他服务的文件目录中&#…...

SQL的高级查询练习知识点(day24)
目录 1 学习目标 2 基础查询 2.1 语法 2.2 例子 3 条件查询 3.1 含义 3.2 语法 3.3 条件表达式 3.3.1 条件运算符 3.3.2 例子 3.4 逻辑表达式 3.4.1 逻辑运算符 3.4.2 例子 3.5 模糊查询 3.5.1 概述 3.5.2 例子 4 DISTINCT关键字 4.1 含义 4.2 例子 5 总结…...
Python条件表达式优化的10个实例
Python 中的条件表达式(也称为三元运算符)是一种简洁的语法,用于在单个表达式中执行 if-else 逻辑。虽然它们本身并不直接“优化”代码的执行速度,但它们可以使代码更加简洁、易读,并且有助于避免不必要的嵌套或复杂的…...

oatpp apiclient 客户端get,post请求python fastapi demo
最新用fastapi搞了个服务端,python功能太强了,就是环境不好弄,弄好后,不要轻易换python版本,不要装多个python版本 前面搞了个oatpp webapi服务端,现在要用客户端,为什么用opatpp客户端,因为他不再带其他库了 demo: 我的请求比较简单,就是向python 的 fastapi服务端…...
RK3568平台(内存篇)EMMC介绍
一.eMMC是什么 eMMC (Embedded Multi Media Card)是MMC协会订立、主要针对手机或平板电脑等产品的内嵌式存储器标准规格。由一个嵌入式存储解决方案组成,带有MMC(多媒体卡)接口、快闪存储器设备及主控制器。所有都在一个小型的BGA 封装。接口速度高达每秒52MBytes,eMMC具…...

Python批量读取身份证信息录入系统和重命名
前言 大家好, 如果你对自动化处理身份证图片感兴趣,可以尝试以下操作:从身份证图片中快速提取信息,填入表格并提交到网页系统。如果你无法完成这个任务,我们将在“Python自动化办公2.0”课程中详细讲解实现整个过程。…...

IBM Storwize V7000存储控制器故障节点报错574
背景:由于客户机房搬迁,需要下电迁移设备。该存储自2016年投入生产使用后,从未关过机,已正常运行七八年时间,期间只更换过硬盘,无其他硬件故障。 在GUI界面点击关闭系统后,大概等了40分钟&…...

通信工程学习:什么是SSB单边带调制、VSB残留边带调制、DSB抑制载波双边带调制
SSB单边带调制、VSB残留边带调制、DSB抑制载波双边带调制 SSB单边带调制、VSB残留边带调制、DSB抑制载波双边带调制是三种不同的调制方式,它们在通信系统中各有其独特的应用和特点。以下是对这三种调制方式的详细解释: 一、SSB单边带调制 1、SSB单边带…...

MapSet之二叉搜索树
系列文章: 1. 先导片--Map&Set之二叉搜索树 2. Map&Set之相关概念 目录 前言 1.二叉搜索树 1.1 定义 1.2 操作-查找 1.3 操作-新增 1.4 操作-删除(难点) 1.5 总体实现代码 1.6 性能分析 前言 TreeMap 和 TreeSet 是 Java 中基于搜索树实现的 M…...
OpenCV图像分割教程
OpenCV 图像分割教程 OpenCV 是一个非常强大的计算机视觉库,支持各种图像处理任务。图像分割是 OpenCV 支持的一个重要功能,它用于将图像划分为不同的区域,识别感兴趣的部分。我们将通过介绍 OpenCV 中的图像分割方法,包括基础功…...
python科学计算:NumPy 线性代数与矩阵操作
1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 Nu…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...