当前位置: 首页 > news >正文

11Python的Pandas:可视化

Pandas本身并没有直接的可视化功能,但它与其他Python库(如Matplotlib和Seaborn)无缝集成,允许你快速创建各种图表和可视化。这里是一些使用Pandas数据进行可视化的常见方法:

1. 使用Matplotlib

Pandas中的plot()方法实际上是基于Matplotlib的,你可以使用它来绘制各种基本图表,例如折线图、柱状图、散点图等。

import pandas as pd
import matplotlib.pyplot as plt# 创建一个示例DataFrame
data = {'A': [1, 2, 3, 4, 5],'B': [5, 4, 3, 2, 1]
}
df = pd.DataFrame(data)# 绘制折线图
df.plot()
plt.show()# 绘制柱状图
df.plot(kind='bar')
plt.show()# 绘制散点图
df.plot(kind='scatter', x='A', y='B')
plt.show()

在这里插入图片描述

2. 使用Seaborn

Seaborn是一个基于Matplotlib的高级可视化库,能够创建更加美观和复杂的图表。它与Pandas配合得非常好。

import seaborn as sns# 创建一个示例DataFrame
data = {'Category': ['A', 'B', 'C', 'D', 'E'],'Values': [5, 7, 8, 4, 6]
}
df = pd.DataFrame(data)# 使用Seaborn绘制条形图
sns.barplot(x='Category', y='Values', data=df)
plt.show()# 使用Seaborn绘制分布图
sns.histplot(df['Values'], kde=True)
plt.show()

在这里插入图片描述

3. 使用Pandas的plot方法与Matplotlib参数

你可以将Matplotlib的参数传递给Pandas的plot()方法,以定制图表的外观。

df.plot(kind='line', title='Sample Line Plot', xlabel='X-axis', ylabel='Y-axis', color='red')
plt.show()

这些是Pandas可视化的基本方法。你可以根据需求进一步调整和扩展这些方法,以创建更复杂或特定的图表。

4.这几个开发包之间的区别

Pandas、Matplotlib和Seaborn都是Python数据分析和可视化领域常用的库,但它们各自有不同的功能和用途。以下是它们之间的主要区别:

1. Pandas

  • 主要功能:Pandas是一个强大的数据处理和分析库,主要用于处理结构化数据。它提供了丰富的数据结构(如DataFrame和Series)和方法来操作、清洗、过滤和分析数据。
  • 数据可视化功能:Pandas本身不专注于可视化,但它提供了基本的可视化功能。通过Pandas的plot()方法,用户可以快速创建一些简单的图表。它实际上是基于Matplotlib的,所以当你使用Pandas的plot()方法时,实际上是在使用Matplotlib。

2. Matplotlib

  • 主要功能:Matplotlib是一个底层的可视化库,用于创建各种静态、动画和交互式的可视化图表。它非常灵活,可以创建从简单到复杂的图表,如折线图、柱状图、散点图、饼图等。Matplotlib提供了非常细粒度的控制,可以自定义图表的每一个细节。
  • 数据可视化功能:Matplotlib是Python中最基础的可视化库,大多数其他可视化库(如Seaborn)都是基于Matplotlib构建的。它的语法相对繁琐,初学者可能需要时间来熟悉。

3. Seaborn

  • 主要功能:Seaborn是一个基于Matplotlib构建的高级可视化库,它提供了更为简洁和美观的接口来创建统计图表。Seaborn专注于统计数据的可视化,能够轻松绘制复杂的图表,如热力图、回归图、分类散点图等。
  • 数据可视化功能:Seaborn使得数据的探索性分析(Exploratory Data Analysis, EDA)变得更加直观和简单。它提供了默认的美学风格,图表往往看起来更现代和易于解释。与Matplotlib相比,Seaborn的默认设置更适合展示统计信息。

总结

  • Pandas:主要用于数据处理和分析,具有基本的可视化能力。适合快速生成简单图表。
  • Matplotlib:功能强大且灵活的底层可视化库,适合对图表有精细控制需求的用户。
  • Seaborn:高级的统计可视化库,专注于简化复杂图表的创建,并且图表默认美观,适合数据探索和展示。

三者常常结合使用:Pandas用于数据处理,Matplotlib用于细粒度的图表控制,Seaborn用于生成美观且易读的统计图表。

相关文章:

11Python的Pandas:可视化

Pandas本身并没有直接的可视化功能,但它与其他Python库(如Matplotlib和Seaborn)无缝集成,允许你快速创建各种图表和可视化。这里是一些使用Pandas数据进行可视化的常见方法: 1. 使用Matplotlib Pandas中的plot()方法…...

【周易哲学】生辰八字入门讲解(二)

😊你好,我是小航,一个正在变秃、变强的文艺倾年。 🔔本文讲解【周易哲学】生辰八字入门讲解,期待与你一同探索、学习、进步,一起卷起来叭! 目录 十神十神判断十神类象十神与五行案例 地支藏干藏…...

传统CV算法——基于Opencv的多目标追踪算法

基于 OpenCV 的跟踪算法有多种,每种算法都有其特定的应用场景和优缺点。以下是一些常见的基于 OpenCV 的目标跟踪算法: 1. BOOSTING 跟踪器 描述:基于 AdaBoost 算法的跟踪器。它是一种早期的跟踪算法,使用的是基于弱分类器的强…...

人生苦短我用Python excel转csv

人生苦短我用Python excel转csv 前言准备工作pandas库主要类和方法ExcelFile 类DataFrame 类read_excel 函数to_csv 函数 示例 前言 Excel 文件和csv文件都是常用的电子表格文件格式,其中csv格式更便于用于数据交换和处理。本文使用pandas库将Excel文件转化为csv文…...

Web2和Web3笔记

KimiAI: Web2和Web3是互联网发展的不同阶段,它们代表了不同的技术、理念和用户交互方式。 Web2: Web2通常指的是第二代互联网,它始于2000年代中期,以用户生成内容和社交网络的兴起为标志。 在Web2中,用户不仅是内容的消…...

单元测试 Mock不Mock?

文章目录 前言单元测试没必要?Mock不Mock?什么是Mock?Mock的意义何在? 如何Mock?应该Mock什么?Mock 编写示例 总结 前言 前段时间,我们团队就单元测试是否采用 Mock 进行了一番交流,各有各的说法。本文就单元测试 Mock不Mock…...

常用排序算法(上)

目录 前言: 1.排序的概念及其运用 1.1排序的概念 1.2排序运用 1.3 常见的排序算法 2.常见排序算法的实现 2.1 堆排序 2.1 1 向下调整算法 2.1 2 建堆 2.1 3 排序 2.2 插入排序 2.1.1基本思想: 2.1.2直接插入排序: 2.1.3 插…...

【从问题中去学习k8s】k8s中的常见面试题(夯实理论基础)(二十六)

本站以分享各种运维经验和运维所需要的技能为主 《python零基础入门》:python零基础入门学习 《python运维脚本》: python运维脚本实践 《shell》:shell学习 《terraform》持续更新中:terraform_Aws学习零基础入门到最佳实战 《k8…...

小程序的页面跳转方式

102. 小程序的页面跳转方式 小程序是一种快速发展的应用形式,为用户提供了便捷的功能和交互体验。其中,页面跳转是小程序中常用的功能之一,本文将介绍小程序的页面跳转方式,并提供代码示例,帮助读者更好地理解和实现页…...

第 21 章 DOM 操作表格及样式

第 21 章 DOM 操作表格及样式 1.操作表格 2.操作样式 DOM 在操作生成 HTML 上,还是比较简明的。不过,由于浏览器总是存在兼容和陷阱,导致最终的操作就不是那么简单方便了。本章主要了解一下 DOM 操作表格和样式的一些知识。 一&#xff0…...

vc-align源码分析 -- ant-design-vue系列

vc-align源码分析 源码地址:https://github.com/vueComponent/ant-design-vue/tree/main/components/vc-align 1 基础代码 1.1 名词约定 需要对齐的节点叫source,对齐的目标叫target。 1.2 props 提供了两个参数: align:对…...

计算机网络(四) —— 简单Tcp网络程序

目录 一,服务器初始化 1.0 部分文件代码 1.1 关于Tcp协议 1.2 创建和绑定套接字 1.3 监听 二,服务器启动 2.1 获取连接 2.2 提供服务 2.3 客户端启动源文件 Main.cc 二,客户端编写 2.1 关于Tcp客户端 2.2 客户端代码 2.3 效果…...

简单的Linux Ftp服务搭建

简单的Linux FTP服务搭建 1.需求 公司有一个esb文件传输代理,其中我们程序有文件传输功能,需要将本地文件传输到esb文件代理服务器上,传输成功之后发送http请求,告知esb将固定文件进行传输到对应外围其他服务的文件目录中&#…...

SQL的高级查询练习知识点(day24)

目录 1 学习目标 2 基础查询 2.1 语法 2.2 例子 3 条件查询 3.1 含义 3.2 语法 3.3 条件表达式 3.3.1 条件运算符 3.3.2 例子 3.4 逻辑表达式 3.4.1 逻辑运算符 3.4.2 例子 3.5 模糊查询 3.5.1 概述 3.5.2 例子 4 DISTINCT关键字 4.1 含义 4.2 例子 5 总结…...

Python条件表达式优化的10个实例

Python 中的条件表达式(也称为三元运算符)是一种简洁的语法,用于在单个表达式中执行 if-else 逻辑。虽然它们本身并不直接“优化”代码的执行速度,但它们可以使代码更加简洁、易读,并且有助于避免不必要的嵌套或复杂的…...

oatpp apiclient 客户端get,post请求python fastapi demo

最新用fastapi搞了个服务端,python功能太强了,就是环境不好弄,弄好后,不要轻易换python版本,不要装多个python版本 前面搞了个oatpp webapi服务端,现在要用客户端,为什么用opatpp客户端,因为他不再带其他库了 demo: 我的请求比较简单,就是向python 的 fastapi服务端…...

RK3568平台(内存篇)EMMC介绍

一.eMMC是什么 eMMC (Embedded Multi Media Card)是MMC协会订立、主要针对手机或平板电脑等产品的内嵌式存储器标准规格。由一个嵌入式存储解决方案组成,带有MMC(多媒体卡)接口、快闪存储器设备及主控制器。所有都在一个小型的BGA 封装。接口速度高达每秒52MBytes,eMMC具…...

Python批量读取身份证信息录入系统和重命名

前言 大家好, 如果你对自动化处理身份证图片感兴趣,可以尝试以下操作:从身份证图片中快速提取信息,填入表格并提交到网页系统。如果你无法完成这个任务,我们将在“Python自动化办公2.0”课程中详细讲解实现整个过程。…...

IBM Storwize V7000存储控制器故障节点报错574

背景:由于客户机房搬迁,需要下电迁移设备。该存储自2016年投入生产使用后,从未关过机,已正常运行七八年时间,期间只更换过硬盘,无其他硬件故障。 在GUI界面点击关闭系统后,大概等了40分钟&…...

通信工程学习:什么是SSB单边带调制、VSB残留边带调制、DSB抑制载波双边带调制

SSB单边带调制、VSB残留边带调制、DSB抑制载波双边带调制 SSB单边带调制、VSB残留边带调制、DSB抑制载波双边带调制是三种不同的调制方式,它们在通信系统中各有其独特的应用和特点。以下是对这三种调制方式的详细解释: 一、SSB单边带调制 1、SSB单边带…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...

c# 局部函数 定义、功能与示例

C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...