当前位置: 首页 > news >正文

揭开面纱--机器学习

一、人工智能三大概念

1.1 AI、ML、DL

1.1.1 什么是人工智能?

AI:Artificial Intelligence 人工智能
AI is the field that studies the synthesis and analysis of
computational agents that act intelligently
AI is to use computers to analog and instead of human brain

AI系统的4大期望:
释义 - 仿智; 像人一样机器智能的综合与分析;机器模拟代替人类

在这里插入图片描述

1.1.2 什么是机器学习?

Machine Learning 释义:机器学习; 自动学习; 机器学
Field of study that gives computers the ability to learn without being explicitly programmed
释义:让机器自动学习,而不是基于规则的编程(不依赖特定规则编程)
在这里插入图片描述

1.1.3 什么是深度学习?

深度学习(DL, Deep Learning) : ,也叫深度神经网络,大脑仿生,设计一层一层的神经元模拟万事万物

在这里插入图片描述

1.2 AI、ML、DL、三者联系和区别

在这里插入图片描述

1.3 算法的学习方式

1.3.1 基于规则的预测

程序员自己手工的if-else方式写经验规则
机器学习出来之前进行预测,需先有一个明确的可解释的规则。 比如垃圾邮件分类
通过 “if…else…” 写很多规则,来对邮件分类!有些场景很难写规则!
例子:大象的识别
在这里插入图片描述

1.3.2 基于模型的学习

从数据中自动学出规律

在这里插入图片描述
例子:房价的预测
在这里插入图片描述

1.4 小结

在这里插入图片描述

二、机器学习的应用领域和发展史

2.1应用领域:

在这里插入图片描述

2.2 机器学习发展史:

在这里插入图片描述

2.3 AI发展三要素

数据、算法、算力三要素互相作用,是AI发展的基石

在这里插入图片描述
要用英伟达的处理器,原因在于其高效的并行处理能力、先进的架构、强大的生态系统支持、以及专为AI优化的硬件功能。
国企一般用华为的升腾处理器。

2.4 小结

在这里插入图片描述

三、机器学习常用术语

3.1 常用术语

在这里插入图片描述

3.2训练集和测试集的划分

在这里插入图片描述
特征:用x表示
目标:用y表示
x_train:训练集中的特征,x_test:测试集中的目标
y_train:测试集中的特征,y_test:测试集中的目标

3.3 小结

在这里插入图片描述

四、算法分类

4.1 有监督学习 Vs 无监督学习

数据上对算法的划分
在这里插入图片描述

有监督学习分为:分类问题和回归问题
在这里插入图片描述
分类种类:
二分类:“是、否”问题
多分类

无监督再举例
在这里插入图片描述

4.2 半监督学习

在这里插入图片描述

4.3强化分类

在这里插入图片描述

4.4 小结

在这里插入图片描述
在这里插入图片描述
机器学习算法可分为哪些类别?分别说一说各自的特点?

1 按照学习方式分类可分为: 监督学习, 无监督学习, 半监督学习, 强化学习
2 监督学习: 输入训练集数据包含输入特征值和目标值
回归: 函数的输出是一个连续的值
分类: 函数的输出是有限个离散值
3 无监督学习: 输入训练集数据是由输入特征值组成,没有目标值
比如:聚类根据样本间的相似性对样本集进行分类
4 半监督学习: 训练集同时包含有目标值的样本数据和不含有目标值的样本数据
5 强化学习: 智能体不断与环境进行交互,通过获取最大奖励的方式(试错的方式)来获得最佳策略;主要包含四个元素:Agent(智能体),环境(Environment),行动(Action),奖励(reward)

五、机器学习建模流程

5.1机器学习建模流程

在这里插入图片描述
注:在整个建模流程中,数据基本处理、特征工程一般是耗时、耗精力最多的。

5.2 有监督学习模型训练和模型预测

在这里插入图片描述

5.3 总结

在这里插入图片描述

六、特征工程概念入门

6.1 特征工程概念入门

在这里插入图片描述
特征提取:原始数据中提取与任务相关的特征,构成特征向量
在这里插入图片描述

特征预处理:特征对模型产生影响;因量纲问题,有些特征对模型影响大、有些影响小
在这里插入图片描述
特征降维:将原始数据的维度降低,叫做特征降维,一般会对原始数据产生影响
在这里插入图片描述
特征选择:原始数据特征很多,与任务相关是其中一个特征集合子集,不会改变原数据
在这里插入图片描述
特征组合:原始数据特征很多,与任务相关是其中一个特征集合子集,不会改变原数据
在这里插入图片描述

6.2 总结

在这里插入图片描述
在这里插入图片描述

七、模型拟合问题

7.1 什么叫拟合?

例如:x轴是年龄,y轴是身高。
红色的f(x)没有拟合x和y
绿色的f(x)拟合了x和y
在这里插入图片描述
模型拟合:就是拟合特征和目标的关系
在这里插入图片描述

7.2 欠拟合和过拟合

例子:识别天鹅
在这里插入图片描述
在这里插入图片描述

7.3 总结

在这里插入图片描述

八、机器学习开发环境

简单高效的数据挖掘和数据分析工具
可供大家使用,可在各种环境中重复使用
建立在NumPy,SciPy和matplotlib上
开源,可商业使用

安装方法:
pip install scikit-learn

在pycharm中验证是否安装成功:
在这里插入图片描述

官网:
https://scikit-learn.org/stable/

在这里插入图片描述
在这里插入图片描述

日拱一卒,功不唐捐,信奉长期主义

每天进步一点点,为中国人工智能的发展贡献力量!

我这么可爱,还等什么?快点关注我哦~

相关文章:

揭开面纱--机器学习

一、人工智能三大概念 1.1 AI、ML、DL 1.1.1 什么是人工智能? AI:Artificial Intelligence 人工智能 AI is the field that studies the synthesis and analysis of computational agents that act intelligently AI is to use computers to analog and instead…...

Python中的私有属性与方法:解锁面向对象编程的秘密

在Python的广阔世界里,面向对象编程(OOP)是一种强大而灵活的方法论,它帮助我们更好地组织代码、管理状态,并构建可复用的软件组件。而在这个框架内,私有属性与方法则是实现封装的关键机制之一。它们不仅有助…...

开篇_____何谓安卓机型“工程固件” 与其他固件的区别 作用

此系列博文将分析安卓系列机型与一些车机 wifi板子等工程固件的一些常识。从早期安卓1.0起始到目前的安卓15,一些厂家发布新机型的常规流程都是从工程机到量产的过程。在其中就需要调试各种参数以便后续的量产参数可以固定到最佳,工程固件由此诞生。 后…...

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed 文章目录 DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed问题解决办法 问题 使用 DBeaver 连接 MySQL 数据库的时候, 一直报错下面的错误 Public Key Retrieval is not allowed详细…...

三个月涨粉两万,只因为知道了这个AI神器

大家好,我是凡人,最近midjourney的账号到期了,正准备充值时,被一个国内AI图片的生成神器给震惊了,不说废话,先上图看看生成效果。 怎么样还不错吧,是我非常喜欢的国风画,哈哈&#x…...

vulhub GhostScript 沙箱绕过(CVE-2018-16509)

1.搭建环境 2.进入网站 3.下载包含payload的png文件 vulhub/ghostscript/CVE-2018-16509/poc.png at master vulhub/vulhub GitHub 4.上传poc.png图片 5.查看创建的文件...

李宏毅机器学习笔记——反向传播算法

反向传播算法 反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降…...

内推|京东|后端开发|运维|算法...|北京 更多岗位扫内推码了解,直接投递,跟踪进度

热招岗位 更多岗位欢迎扫描末尾二维码,小程序直接提交简历等面试。实时帮你查询面试进程。 安全运营中心研发工程师 岗位要求 1、本科及以上学历,3年以上的安全相关工作经验; 2、熟悉c/c、go编程语言之一、熟悉linux网络编程和系统编程 3、…...

编写Dockerfile第二版

目标 更快的构建速度 更小的Docker镜像大小 更少的Docker镜像层 充分利用镜像缓存 增加Dockerfile可读性 让Docker容器使用起来更简单 总结 编写.dockerignore文件 容器只运行单个应用 将多个RUN指令合并为一个 基础镜像的标签不要用latest 每个RUN指令后删除多余文…...

校验码:奇偶校验,CRC循环冗余校验,海明校验码

文章目录 奇偶校验码CRC循环冗余校验码海明校验码 奇偶校验码 码距:任何一种编码都由许多码字构成,任意两个码字之间最少变化的二进制位数就称为数据检验码的码距。 奇偶校验码的编码方法是:由若干位有效信息(如一个字节),再加上…...

增维思考,减维问题,避免焦虑!

什么是嵌入式软件开发的核心技能? 1. 编程语言 熟练掌握C/C:C语言是嵌入式领域最重要也是最主要的编程语言,用于实现系统功能和性能优化。C在需要面向对象编程的场合也是重要的选择。了解汇编语言:在某些需要直接与硬件交互或优…...

自动化抢票 12306

自动化抢票 12306 1. 明确需求 明确采集的网站以及数据内容 网址: https://kyfw.12306.cn/otn/leftTicket/init数据: 车次相关信息 2. 抓包分析 通过浏览器开发者工具分析对应的数据位置 打开开发者工具 F12 或鼠标右键点击检查 刷新网页 点击下一页/下滑网页页面/点击搜…...

海外云服务器安装 MariaDB10.6.X (Ubuntu 18.04 记录篇二)

本文首发于 秋码记录 MariaDB 的由来(历史) 谈起新秀MariaDB,或许很多人都会感到陌生吧,但若聊起享誉开源界、业界知名的关系型数据库——Mysql,想必混迹于互联网的人们(coder)无不知晓。 其…...

Mybatis_基础

文章目录 第一章 Mybatis简介1.1 Mybatis特性1.2 和其它持久化层技术对比 第二章 Mybatis的增删改查第三章 Mybatis的增删改查 第一章 Mybatis简介 1.1 Mybatis特性 MyBatis 是支持定制化 SQL、存储过程以及高级映射的优秀的持久层框架。MyBatis 避免了几乎所有的 JDBC 代码和…...

8Manage采购申请管理:轻松实现手动采购流程自动化

您是否感受到通过手动采购申请流程管理成本的压力? 信息的不充分常常导致现金流的不透明,这已成为财务高管们的常见痛点。本文将展示采购申请管理软件如何帮助您减轻负担,使您能够简化流程。 没有采购申请软件会面临哪些挑战? …...

PADS Router 入门基础教程(一)

有将近三周没有更新过博客了,最近在整理PADS Router 入门基础教程,希望喜欢本系列教程的小伙伴可以点点关注和订阅!下面我们开始进入PADS Router课程的介绍。 一、PADS Router 快捷键 ​ 二、课程介绍 本教程主要介绍:PADS Rou…...

一台手机一个ip地址吗?手机ip地址泄露了怎么办

在数字化时代,‌手机作为我们日常生活中不可或缺的一部分,‌其网络安全性也日益受到关注。‌其中一个常见的疑问便是:‌“一台手机是否对应一个固定的IP地址?‌”实际上,‌情况并非如此简单。‌本文首先解答这一问题&a…...

【扇贝编程】使用Selenium模拟浏览器获取动态内容笔记

文章目录 selenium安装 selenium下载浏览器驱动 获取数据处理数据查找一个元素查找所有符合条件的元素 控制浏览器 selenium selenium是爬虫的好帮手, 可以控制你的浏览器,模仿人浏览网页,从而获取数据,自动操作等。 我们只要让…...

TCP Analysis Flags 之 TCP Port numbers reused

前言 默认情况下,Wireshark 的 TCP 解析器会跟踪每个 TCP 会话的状态,并在检测到问题或潜在问题时提供额外的信息。在第一次打开捕获文件时,会对每个 TCP 数据包进行一次分析,数据包按照它们在数据包列表中出现的顺序进行处理。可…...

【Python机器学习】核心数、进程、线程、超线程、L1、L2、L3级缓存

如何知道自己电脑的CPU是几核的,打开任务管理器(同时按下:Esc键、SHIFT键、CTRL键) 然后,点击任务管理器左上角的性能选项,观察右下角中的内核:后面的数字,就是你CPU的核心数,下图中我的是16个核心的。 需要注意的是,下面的逻辑处理器:32 表示支持 32 线程(即超线…...

JavaScript使用地理位置 API

前言 在JavaScript中,Geolocation API 是一种用于访问用户地理位置的接口。这个API允许网页应用程序获取用户的位置并提供基于位置的服务。 if (navigator.geolocation)navigator.geolocation.getCurrentPosition(function () {},function () {});这个函数中需要传…...

dockerfile部署fastapi项目

dockerfile部署fastapi项目 1、Dockerfile # 使用Python官方镜像作为基础镜像 FROM python:3.8-slim# 更新apt-get源并安装依赖 # RUN apt-get update -y && apt-get install -y git# 设置环境变量 ENV PYTHONDONTWRITEBYTECODE 1 ENV PYTHONUNBUFFERED 1# 创建工作目…...

火语言RPA流程组件介绍--浏览网页

🚩【组件功能】:浏览器打开指定网址或本地html文件 配置预览 配置说明 网址URL 支持T或# 默认FLOW输入项 输入需要打开的网址URL 超时时间 支持T或# 打开网页超时时间 执行后后等待时间(ms) 支持T或# 当前组件执行完成后继续等待的时间 UserAgen…...

【Linux系统学习】2.Linux基础命令

Linux基础命令 Linux的目录结构 Linux命令入门 目录切换相关命令(cd/pwd) 相对路径、绝对路径和特殊路径符 创建目录命令(mkdir) 文件操作命令part1(touch、cat、more) 文件操作命令part2(cp、mv、rm) 查找命令(which、find) grep、wc和管道符…...

ABAP正则表达式 特殊字符处理

REPLACE ALL OCCURRENCES OF REGEX [[:space:]] IN <fs_purhdinfo>-cell_value WITH ."可去掉空格或回车键 REPLACE ALL OCCURRENCES OF &#xff1a; IN <fs_purhdinfo>-cell_value WITH ."可去掉空格或回车键 REPLACE ALL OCCURRENCES OF R…...

【2024高教社杯全国大学生数学建模竞赛】ABCDEF题 问题分析、模型建立、参考文献及实现代码

【2024高教社杯全国大学生数学建模竞赛】ABCDEF题 问题分析、模型建立、参考文献及实现代码 1 比赛时间 北京时间&#xff1a;2024年9月5日 18:00-2024年9月8日20:00 2 思路内容 2.1 往届比赛资料 【2022高教社杯数学建模】C题&#xff1a;古代玻璃制品的成分分析与鉴别方案…...

# VMware 共享文件

VMware tools快速安装 VMware 提供了 open-vm-tools&#xff0c;这是 VMware 官方推荐的开源工具包&#xff0c;通常不需要手动安装 VMware Tools&#xff0c;因为大多数 Linux 发行版&#xff08;包括 Ubuntu、CentOS 等&#xff09;都包含了 open-vm-tools&#xff0c;并且已…...

[UVM]3.核心基类 uvm_object 域的自动化 copy() compare() print() pack unpack

1.核心基类&#xff1a;uvm_object &#xff08;1&#xff09;虚类只能声明&#xff0c;不能例化。 &#xff08;2&#xff09;uvm_object提供的方法 2.域的自动化&#xff08;field automation&#xff09; &#xff08;1&#xff09;简述 &#xff08;2&#xff09;示例 格…...

Java网络编程入门

在现代软件开发中&#xff0c;网络编程是一项不可或缺的技能。Java提供了强大的网络编程支持&#xff0c;使得开发者能够轻松地创建网络应用程序。今天将介绍Java中的网络编程基础&#xff0c;重点讲解Socket和ServerSocket类的使用。 什么是Socket&#xff1f; Socket是网络通…...

前端基础面试题·第三篇——JavaScript(其一)

1.JavaScript数据类型与运算符 数据类型 原始数据类型&#xff1a; 1.Number 2.String 3.Boolean 4.undefined 5.null 6.Symbol 7.bigint 复杂数据类型&#xff1a; 1.Function 2.非函数&#xff1a; Array: 数组 Object: 对象 Date: 日期 RegExp: 正则 Map: 映射 Set: 集合 …...