【深度学习详解】Task3 实践方法论-分类任务实践 Datawhale X 李宏毅苹果书 AI夏令营
前言
综合之前的学习内容,
本篇将探究机器学习实践方法论
出现的问题及其原因
🍎 🍎 🍎
系列文章导航
【深度学习详解】Task1 机器学习基础-线性模型 Datawhale X 李宏毅苹果书 AI夏令营
【深度学习详解】Task2 分段线性模型-引入深度学习 Datawhale X 李宏毅苹果书 AI夏令营
【深度学习详解】Task3 实践方法论-分类任务实践 Datawhale X 李宏毅苹果书 AI夏令营本篇目录导航
- 前言
- 系列文章导航
- 实践方法论
- 问题描述:large loss on training data
- 模型偏差
- 优化问题
- is 模型偏差 or 优化问题 ?
- 问题描述:large loss on testing data
- 过拟合【交叉验证】
- 不匹配
- Python 分类任务实践
- Read more
实践方法论
李宏毅《机器学习/深度学习》2021课程 -> 机器学习任务攻略
问题描述:large loss on training data
训练数据的损失很大,显然它在训练集上面也没有训练好
模型偏差
鼠标右键 -> 在新标签页中打开图像
模型过于简单
- 该函数的集合太小了, 没有包含任何一个函数,
可以让损失变低的函数不在模型可以描述的范围内。- 想要在大海里面捞针(一个损失低的函数),
结果针根本就不在海里。
给模型更大的灵活性
- 增加输入的特征,即同时考虑更多训练数据
(得到更有灵活性 flexibility 的函数)- 重新设计一个模型,使用深度学习
(更多的 layer 层数)
优化问题
鼠标右键 -> 在新标签页中打开图像
优化器不给力
- 优化器(梯度下降)在寻找代价函数最低点的过程,
会出现局部最小值干扰,无法找到全局最小值。- 想要在大海里面捞针(一个损失低的函数),
针确实在海里,但是无法把针捞起来。
尝试更强大的优化器,寻找损失低的函数
is 模型偏差 or 优化问题 ?
问题描述:large loss on testing data
训练数据上面的损失小,但在测试数据上的损失大
过拟合【交叉验证】
鼠标右键 -> 在新标签页中打开图像
模型过于复杂
- 模型灵活性过大,学习到了训练数据的噪声。
(模型过于复杂,对数据过度适应)
增加训练集数据限制住拟合的模型
(往往是最有效的方向)
- 需要增加额外的训练集数据(不容易。)
- 不用增加额外的训练集数据(很建议!)
data augmentation 数据增强:
根据问题的理解创造出新的合理数据
给模型更多的限制性
- 减少输入的特征,即同时考虑更少训练数据
(不要过大灵活性 flexibility 的函数)- 重新设计一个模型:减少参数 / 共用参数(可以让一些参数有一样的数值)
eg. 神经元数量- 重新设计一个模型:使用更受限的模型。
eg. 卷积神经网络(Convolutional Neural Network,CNN)
是比全连接网络(fully-connected network)更有限制的架构- Early stopping 早停
- Regularization 正则化
- Dropout 丢弃法
trade-off(权衡模型的灵活性和限制性)
比较合理选择模型的方法是:
将训练数据分成“训练集”和“进行模型选择的验证集”
即,
在训练集上训练出来的模型
会使用验证集来衡量分数和挑选模型,即基线(baseline)算法
(避免在公开的测试集上面频繁挑选模型导致的过拟合)
Cross Validation 交叉验证
将训练数据按照百分比随机分成“训练集”和“进行模型选择的验证集”。例如:
90%训练数据作为“训练集”,
10%训练数据作为“进行模型选择的验证集”。
N-fold Cross Validation N 折交叉验证
将训练数据切成 n 等份,这件事情要重复 3 次:
n - 1 份作为“训练集”,
还有 1 份作为“进行模型选择的验证集”。
不匹配
鼠标右键 -> 在新标签页中打开图像
训练集和测试集的分布不同,
导致模型在测试集上的预测表现不佳。
要对训练数据和测试数据的产生方式有一些理解,
确保重新收集的训练数据与数据数据的分布尽可能一致
Python 分类任务实践
baseline 教程
https://datawhaler.feishu.cn/wiki/M7tqwIHYdiz5ULkRkD9cPPWTntg
数据集 下载
【2023机器学习】的系列资料包括 视频、课件、代码等资源已经系统顺序命名并整理到百度网盘:
https://pan.baidu.com/s/1-zfs0wn5rccTRVk34YZWaA,提取码:2023。
来源:https://blog.csdn.net/qq_39975984/article/details/133103314
Read more
-
李宏毅深度学习教程 LeeDL-Tutorial(苹果书)
https://github.com/datawhalechina/leedl-tutorial
李宏毅《机器学习/深度学习》2021课程(视频教程 24 h 46 min)
https://www.bilibili.com/video/BV1JA411c7VT/ -
Hung-yi Lee (李宏毅) MACHINE LEARNING 2023 SPRING
https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php
作业数据集搬运:
https://blog.csdn.net/qq_39975984/article/details/133103314
https://github.com/keepstumz/LHY-ML
相关文章:

【深度学习详解】Task3 实践方法论-分类任务实践 Datawhale X 李宏毅苹果书 AI夏令营
前言 综合之前的学习内容, 本篇将探究机器学习实践方法论 出现的问题及其原因 🍎 🍎 🍎 系列文章导航 【深度学习详解】Task1 机器学习基础-线性模型 Datawhale X 李宏毅苹果书 AI夏令营 【深度学习详解】Task2 分段线性模型-引入…...

乐凡北斗 | 手持北斗智能终端的作用与应用场景
在科技日新月异的今天,北斗智能终端作为一项融合了北斗导航系统与现代智能技术的创新成果,正悄然改变着我们的生活方式和工作模式。 北斗智能终端,是以北斗卫星导航系统为核心,集成了高精度定位、导航、授时等功能的智能设备。它…...

Linux:线程互斥
线程互斥 先看到一个抢票案例: class customer { public:int _ticket_num 0;pthread_t _tid;string _name; };int g_ticket 10000;void* buyTicket(void* args) {customer* cust (customer*)args;while(true){if(g_ticket > 0){usleep(1000);cout << …...

misc流量分析
一、wireshark语法 1、wireshark过滤语法 (1)过滤IP地址 ip.srcx.x..x.x 过滤源IP地址 ip.dstx.x.x.x 过滤目的IP ip.addrx.x.x.x 过滤某个IP (2)过滤端口号 tcp.port80tcp.srcport80 显示TCP的源端口80tcp.dstport80 显示…...

Linux驱动(五):Linux2.6驱动编写之设备树
目录 前言一、设备树是个啥?二、设备树编写语法规则1.文件类型2.设备树源文件(DTS)结构3.设备树源文件(DTS)解析 三、设备树API函数1.在内核中获取设备树节点(三种)2.获取设备树节点的属性 四、…...

算法【Java】 —— 前缀和
模板引入 一维前缀和 https://www.nowcoder.com/share/jump/9257752291725692504394 解法一:暴力枚举 在每次提供 l 与 r 的时候,都从 l 开始遍历数组,直到遇到 r 停止,这个方法的时间复杂度为 O(N * q) 解法二:前…...

python网络爬虫(四)——实战练习
0.为什么要学习网络爬虫 深度学习一般过程: 收集数据,尤其是有标签、高质量的数据是一件昂贵的工作。 爬虫的过程,就是模仿浏览器的行为,往目标站点发送请求,接收服务器的响应数据,提取需要的信息,…...
tio websocket 客户端 java 代码 工具类
为了更好地组织代码并提高可复用性,我们可以将WebSocket客户端封装成一个工具类。这样可以在多个地方方便地使用WebSocket客户端功能。以下是使用tio库实现的一个WebSocket客户端工具类。 1. 添加依赖 确保项目中添加了tio的依赖。如果使用的是Maven,可以…...

通过卷积神经网络(CNN)识别和预测手写数字
一:卷积神经网络(CNN)和手写数字识别MNIST数据集的介绍 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,它在图像和视频识别、分类和分割任务中表现出色。CNN通过模仿…...

【A题第二套完整论文已出】2024数模国赛A题第二套完整论文+可运行代码参考(无偿分享)
“板凳龙” 闹元宵路径速度问题 摘要 本文针对传统舞龙进行了轨迹分析,并针对一系列问题提出了解决方案,将这一运动进行了模型可视化。 针对问题一,我们首先对舞龙的螺线轨迹进行了建模,将直角坐标系转换为极坐标系࿰…...

一份热乎的数据分析(数仓)面试题 | 每天一点点,收获不止一点
目录 1. 已有ods层⽤⼾表为ods_online.user_info,有两个字段userid和age,现设计数仓⽤⼾表结构如 下: 2. 设计数据仓库的保单表(⾃⾏命名) 3. 根据上述两表,查询2024年8⽉份,每⽇,…...

3 html5之css新选择器和属性
要说css的变化那是发展比较快的,新增的选择器也很多,而且还有很多都是比较实用的。这里举出一些案例,看看你平时都是否用过。 1 新增的一些写法: 1.1 导入css 这个是非常好的一个变化。这样可以让我们将css拆分成公共部分或者多…...

【Kubernetes】K8s 的鉴权管理(一):基于角色的访问控制(RBAC 鉴权)
K8s 的鉴权管理(一):基于角色的访问控制(RBAC 鉴权) 1.Kubernetes 的鉴权管理1.1 审查客户端请求的属性1.2 确定请求的操作 2.基于角色的访问控制(RBAC 鉴权)2.1 基于角色的访问控制中的概念2.1…...
保研 比赛 利器: 用AI比赛助手降维打击数学建模
数学建模作为一个热门但又具有挑战性的赛道,在保研、学分加分、简历增色等方面具有独特优势。近年来,随着AI技术的发展,特别是像GPT-4模型的应用,数学建模的比赛变得不再那么“艰深”。通过利用AI比赛助手,不仅可以大大…...

秋招校招,在线性格测评应该如何应对
秋招校招,如果遇到在线测评,如何应对? 这里写个总结稿,希望对大家有些帮助。在线测评是企业深入了解求职人的渠道,如果是性格测试,会要求测试者能够快速答出,以便于反应实际情况(时间…...

chrome 插件开发入门
1. 介绍 Chrome 插件可用于在谷歌浏览器上控制当前页面的一些操作,可自主控制网页,提升效率。 平常我们可在谷歌应用商店中下载谷歌插件来增强浏览器功能,作为开发者,我们也可以自己开发一个浏览器插件来配合我们的日常学习工作…...

揭开面纱--机器学习
一、人工智能三大概念 1.1 AI、ML、DL 1.1.1 什么是人工智能? AI:Artificial Intelligence 人工智能 AI is the field that studies the synthesis and analysis of computational agents that act intelligently AI is to use computers to analog and instead…...
Python中的私有属性与方法:解锁面向对象编程的秘密
在Python的广阔世界里,面向对象编程(OOP)是一种强大而灵活的方法论,它帮助我们更好地组织代码、管理状态,并构建可复用的软件组件。而在这个框架内,私有属性与方法则是实现封装的关键机制之一。它们不仅有助…...

开篇_____何谓安卓机型“工程固件” 与其他固件的区别 作用
此系列博文将分析安卓系列机型与一些车机 wifi板子等工程固件的一些常识。从早期安卓1.0起始到目前的安卓15,一些厂家发布新机型的常规流程都是从工程机到量产的过程。在其中就需要调试各种参数以便后续的量产参数可以固定到最佳,工程固件由此诞生。 后…...

DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed
DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed 文章目录 DBeaver 连接 MySQL 报错 Public Key Retrieval is not allowed问题解决办法 问题 使用 DBeaver 连接 MySQL 数据库的时候, 一直报错下面的错误 Public Key Retrieval is not allowed详细…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
安卓基础(aar)
重新设置java21的环境,临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的: MyApp/ ├── app/ …...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...

uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...