【Leetcode152】乘积最大子数组(动态规划)
文章目录
- 一、题目
- 二、思路
- 三、代码
一、题目

二、思路
(0)读懂题意:题目的“连续”是指位置的连续,而不是说数字的连续,这是个大坑。
(1)确定状态:定义两个状态来记录当前子数组的最大乘积、最小乘积。因为在处理负数时,最小乘积乘以负数可能变为最大乘积。dp_max[i]表示以nums[i]结尾的子数组的最大乘积、dp_min[i]表示以nums[i]结尾的子数组的最小乘积。
(2)状态转移方程:对于每个元素nums[i],我们的dp_max[i]和dp_min[i]可以从这三个数中确定:
- 只包含当前元素
nums[i]。 - 当前元素与之前的最大乘积子数组乘积,即
dp_max[i-1] * nums[i]。 - 当前元素与之前的最小乘积子数组乘积,即
dp_min[i-1] * nums[i]。
即状态转移方程可表示为:
dp_max[i] = max(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i])
dp_min[i] = min(nums[i], dp_max[i-1] * nums[i], dp_min[i-1] * nums[i])
(3)初始状态+边界条件:以第一个元素结尾的子数组最大乘积就是它本身、以第一个元素结尾的子数组最小乘积就是它本身、初始乘积最大结果为第一个元素。
(4)遍历顺序:从左到右遍历数组。
三、代码
(方法一)按照思路的代码如下,时间复杂度为O(n),空间复杂度为O(n)。
class Solution(object):def maxProduct(self, nums):""":type nums: List[int]:rtype: int"""if len(nums) == 0:return 0if len(nums) == 1:return nums[0]# 初始化数组n = len(nums)dp_max = [0] * n dp_min = [0] * n# 初始状态dp_max[0] = nums[0]dp_min[0] = nums[0]cheng_ans = nums[0]# 从第二个元素开始遍历for i in range(1, n):num = nums[i]dp_max[i] = max(num, dp_max[i-1]*num, dp_min[i-1]*num)dp_min[i] = min(num, dp_max[i-1]*num, dp_min[i-1]*num)cheng_ans = max(cheng_ans, dp_max[i])return cheng_ans
(方法二)为了优化空间复杂度,发现每次当前只利用前一次状态,所以dp_max和dp_min没必要单独用两个数组记录所有的状态。但注意在计算状态转移方程时,分别计算dp_max和dp_min都会用到上一次的dp_max和dp_min,这为了用错dp_mxn,可以直接对num确保是正数后,交换dp_max和dp_min的位置,减少max和min函数的入参个数。
class Solution(object):def maxProduct(self, nums):""":type nums: List[int]:rtype: int"""if len(nums) == 0:return 0if len(nums) == 1:return nums[0]# 初始化数组n = len(nums)# 初始状态dp_max = nums[0]dp_min = nums[0]cheng_ans = nums[0]# 从第二个元素开始遍历for i in range(1, n):num = nums[i]if num < 0:dp_max, dp_min = dp_min, dp_maxdp_max = max(num, dp_max*num)dp_min = min(num, dp_min*num)cheng_ans = max(cheng_ans, dp_max)return cheng_ans
相关文章:
【Leetcode152】乘积最大子数组(动态规划)
文章目录 一、题目二、思路三、代码 一、题目 二、思路 (0)读懂题意:题目的“连续”是指位置的连续,而不是说数字的连续,这是个大坑。 (1)确定状态:定义两个状态来记录当前子数组的…...
STM32(十二):DMA直接存储器存取
DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设和存储器或者存储器和存储器之间的高速数据传输,无须CPU干预,节省了CPU的资源。(运行内存SRAM、程序存储器Flash、寄存器) 12个独立可配置的通道&…...
关于我2020年7月至今(2024.9)的“炒股”经历和感受
声明:我远不是一个成熟的投资者(这个名词太大了,我那三瓜两枣似乎完全配不上投资者这三个字,或者“小小散”更加贴切)。本文不构成任何入(股)市的引导或者买卖股票的建议。 “炒股”这个词,相信绝大多数人看来都-是一个贬义词&…...
【Tools】Prompt Engineering简介
摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样 🎵 方芳《摇太阳》 大模型中的Prompt Engineering是指为了提高大模型在特定任…...
多路转接之select(fd_set介绍,参数详细介绍),实现非阻塞式网络通信
目录 多路转接之select 引入 介绍 fd_set 函数原型 nfds readfds / writefds / exceptfds readfds 总结 fd_set操作接口 timeout timevalue 结构体 传入值 返回值 代码 注意点 -- 调用函数 select的参数填充 获取新连接 注意点 -- 通信时的调用函数 添…...
乐鑫安全制造全流程
主要参考资料: 【乐鑫全球开发者大会】DevCon24 #10 |乐鑫安全制造全流程 乐鑫官方文档Flash加密: https://docs.espressif.com/projects/esp-idf/zh_CN/latest/esp32/security/flash-encryption.html 【ESP32S3】使用 Flash 下载工具完成 Flash 加密功能…...
〖open-mmlab: MMDetection〗解析文件:configs/_base_/schedules
详细解析三个训练调度文件:schedule_1x.py、schedule_2x.py、schedule_20e.py 在深度学习模型训练过程中,训练调度(Training Schedule)是至关重要的,它决定了模型训练过程中学习率(Learning Rate, LR&…...
Android之Handler是如何保证延迟发送的
目录 核心组件延迟发送消息的工作原理具体步骤1. 创建 Handler:2.发送延迟消息3.消息入队列4.消息出队和处理: 关键点总结 在 Android 中,Handler 是用于在不同线程之间传递和处理消息的工具。它可以用于定时任务、延迟执行任务等。Handler 如何保证延迟发送消息的核…...
定位信标、基站、标签,定位信标是什么
定位信标、基站、标签,定位信标是什么 今天给各位分享定位信标、基站、标签的知识,其中也会对定位信标是什么进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧! 怎样做人员定位啊? 〖…...
2024国赛数学建模B题完整分析参考论文38页(含模型和可运行代码)
2024 高教社杯全国大学生数学建模完整分析参考论文 B 题 生产过程中的决策问题 目录 摘要 一、问题重述 二、问题分析 三、 模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码(仅供参考) 4.…...
Hive是什么?
Apache Hive 是一个基于 Hadoop 的数据仓库工具,用于在 Hadoop 分布式文件系统(HDFS)上管理和查询大规模结构化数据集。Hive 提供了一个类似 SQL 的查询语言,称为 HiveQL,通过这种语言可以在 HDFS 上执行 MapReduce 作…...
计算机网络:http协议
计算机网络:http协议 一、本文内容与前置知识点1. 本文内容2. 前置知识点 二、HTTP协议工作简介1. 特点2. 传输时间分析3. http报文结构 三、HTTP版本迭代1. HTTP1.0和HTTP1.1主要区别2. HTTP1.1和HTTP2主要区别3. HTTPS与HTTP的主要区别 四、参考文献 一、本文内容…...
【stata】自写命令分享dynamic_est,一键生成dynamic effect
1. 命令简介 dynamic_est 是一个用于可视化动态效应(dynamic effect)的工具。它特别适用于事件研究(event study)或双重差分(Difference-in-Differences, DID)分析。通过一句命令即可展示动态效应…...
文心一言 VS 讯飞星火 VS chatgpt (342)-- 算法导论23.2 1题
一、对于同一个输入图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的…...
部署若依Spring boot项目
nohup和& nohup命令解释 nohup命令:nohup 是 no hang up 的缩写,就是不挂断的意思,但没有后台运行,终端不能标准输入。 nohup :不挂断的运行,注意并没有后台运行的功能,就是指,用nohup运行命令可以使命令永久的执行下去,和用户终端没有关系,注意了nohup没有后台…...
oc打包:权限弹窗无法正常弹出
在遇到编写了权限无法弹出弹窗时,需要查看是不是调用时机不对,这里直接教万能改法。 将权限获取方法编写在applicationDidBecomeActive 进入前台的生命周期接口中,如下: if (@available(iOS 14, *)) {NSLog<...
深入理解RxJava:响应式编程的现代方式
在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJ…...
Maven 依赖漏洞扫描检查插件 dependency-check-maven 的使用
前言 在现代软件开发中,开源库的使用愈加普遍,然而这些开源库中的漏洞往往会成为潜在的安全风险。如何及时的发现依赖的第三方库是否存在漏洞,就变成很重要了。 本文向大家推荐一款可以进行依赖包漏洞检查的 maven 插件 dependency-check-m…...
2. 下载rknn-toolkit2项目
官网链接: https://github.com/airockchip/rknn-toolkit2 安装好git:[[1. Git的安装]] 下载项目: git clone https://github.com/airockchip/rknn-toolkit2.git或者直接去github下载压缩文件,解压即可。...
xhr、ajax、axois、fetch的区别
一、XMLHttpRequest (XHR)、AJAX、Axios 和 Fetch API 都是用于在不重新加载整个页面的情况下与服务器进行通信的技术和库。它们在处理超时、终止请求、进度反馈等机制上有一些显著的差异。以下是它们的详细比较: 1. XMLHttpRequest (XHR) XMLHttpRequest 是一种浏…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
