研究生深度学习入门的十天学习计划------第九天
第9天:深度学习中的迁移学习与模型微调
目标: 理解迁移学习的核心概念,学习如何在实际应用中对预训练模型进行迁移和微调,以应对不同领域的任务。
9.1 什么是迁移学习?
迁移学习(Transfer Learning) 是指将一个任务上学到的模型或知识应用到另一个任务的机器学习方法,特别是在目标任务的数据量有限或任务相关性较强时,迁移学习能够大幅缩短训练时间并提高模型效果。
迁移学习的核心思想是利用预训练模型,即在大规模数据集(如 ImageNet、COCO 等)上预训练的深度学习模型,然后在目标任务的数据集上进行微调。这种方法在计算机视觉和自然语言处理等领域中应用广泛。
迁移学习的优势:
- 减少训练时间: 预训练模型已经掌握了低级特征(如边缘、纹理等),可以在目标任务上快速收敛。
- 提高模型表现: 在小数据集上,迁移学习能避免过拟合并提升性能。
- 资源节省: 无需从零开始训练庞大的模型,节省计算资源和成本。
学习资源:
- 文章:《A Comprehensive Guide to Transfer Learning》 by Towards Data Science
- 视频教程:《Transfer Learning and Fine-Tuning with Deep Learning》 by deeplearning.ai
任务:
- 理解迁移学习的核心概念,学习如何选择适合的预训练模型。
- 在计算机视觉领域,选择一个目标任务(如猫狗分类、医疗图像识别等),应用迁移学习方法进行实验。
9.2 如何应用迁移学习?
在迁移学习中,最常见的步骤是加载预训练模型,如 ResNet、VGG、Inception 等,然后在目标任务上进行微调(Fine-tuning)。以下是迁移学习的两个主要方式:
- 特征提取(Feature Extraction): 保留预训练模型的所有权重,只替换最后的分类层,并在目标数据集上训练新的分类器。这种方法适用于数据较少的场景,模型不需要大幅调整。
- 微调(Fine-tuning): 在特征提取的基础上,解冻部分或全部预训练模型的权重,对整个模型进行联合训练。这种方法适用于数据量较大或目标任务与预训练任务有较大差异的场景。
步骤示例:
- 加载预训练模型: 使用深度学习框架(如 TensorFlow 或 PyTorch)加载预训练模型,如 ResNet50。
- 冻结卷积层: 保留预训练模型的卷积层,冻结其权重,使其不会在训练过程中更新。
- 替换分类层: 添加一个新的分类器层,并在目标数据集上进行训练。
示例代码:
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten# 加载预训练模型并冻结卷积层
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
base_model.trainable = False# 添加新的分类层
model = Sequential([base_model,Flatten(),Dense(128, activation='relu'),Dense(10, activation='softmax') # 根据目标任务调整输出层
])# 编译模型并训练
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels, epochs=5, validation_data=(val_data, val_labels))
9.3 模型微调的技巧与挑战
模型微调 是迁移学习的关键步骤,通过解冻部分或全部预训练模型的权重,在新任务上进一步训练模型。然而,微调过程中存在一些挑战和技巧:
- 选择解冻的层数: 如果新任务与预训练任务非常相似,只需微调最后几层;如果差异较大,则可能需要微调更多层甚至整个模型。
- 学习率调节: 微调时需要使用较低的学习率,防止对预训练的权重进行过度调整。可以使用两阶段学习率:初期冻结大部分层,微调分类层;之后逐步解冻层数并降低学习率。
- 避免过拟合: 在微调过程中,如果目标任务的数据集较小,模型容易过拟合。可以通过数据增强、正则化等方法缓解过拟合。
学习资源:
- 文章:《How to Fine-tune a Pre-trained Model》 by TensorFlow Blog
- 视频教程:《Effective Techniques for Fine-tuning Pre-trained Models》 by fast.ai
任务:
- 选择一个预训练模型(如 EfficientNet、MobileNet),在一个不同的数据集上进行模型微调。
- 比较不同微调策略(如不同的解冻层数、学习率设置)对模型性能的影响。
9.4 迁移学习在不同领域的应用
迁移学习在计算机视觉和自然语言处理等领域应用广泛,不仅局限于图像分类,还包括以下应用场景:
- 目标检测: 预训练的 YOLO、Faster R-CNN 等模型可以迁移到目标检测任务中。
- 图像分割: 使用预训练的 U-Net 或 DeepLab 模型进行医学图像分割。
- 自然语言处理: 在 NLP 中,BERT、GPT 等大型语言模型可以通过迁移学习应用于文本分类、机器翻译、问答系统等任务。
- 音频处理: 在语音识别或音频分类任务中,可以利用预训练的卷积神经网络进行迁移学习。
案例研究:
- 计算机视觉: 医疗图像分析中,迁移学习可以将预训练模型应用于肿瘤检测、病灶分割等任务。
- 自然语言处理: 在客户服务或金融文本分析中,BERT 模型通过迁移学习可以快速适应新任务。
学习资源:
- 文章:《Transfer Learning in NLP》 by Analytics Vidhya
- 视频教程:《Transfer Learning for NLP with BERT》 by deeplizard
任务:
- 尝试将迁移学习应用于一个新的领域,如目标检测或自然语言处理,观察迁移学习的效果。
- 根据具体任务需求,设计迁移学习的微调策略并进行实验。
9.5 第九天的总结与思考
在今天的学习中,你深入理解了迁移学习的核心思想,并学会了如何在不同任务中应用预训练模型和进行微调。建议回顾以下问题:
- 迁移学习在哪些任务中表现出色?它能有效提升你当前项目的性能吗?
- 你在微调预训练模型时遇到了哪些挑战?你是如何解决的?
- 如何根据任务特点选择适合的迁移学习方法?
任务:
- 总结你今天的学习成果,并撰写一篇关于迁移学习和模型微调的文章,介绍它们在深度学习中的应用与挑战。
- 尝试在你的研究或项目中应用迁移学习,利用预训练模型加速任务解决。
通过第九天的学习,你将掌握迁移学习的核心技术,并具备在不同领域中高效应用预训练模型的能力。这为你进一步探索和优化深度学习模型提供了强大的工具。
相关文章:
研究生深度学习入门的十天学习计划------第九天
第9天:深度学习中的迁移学习与模型微调 目标: 理解迁移学习的核心概念,学习如何在实际应用中对预训练模型进行迁移和微调,以应对不同领域的任务。 9.1 什么是迁移学习? 迁移学习(Transfer Learning&#…...
perl的学习记录——仿真regression
1 记录的背景 之前只知道有这个强大语言的存在,但一直侥幸自己应该不会用到它,所以一直没有开始学习。然而人生这么长,怎就确定自己不会用到呢? 这次要搭建一个可以自动跑完所有case并且打印每个case的pass信息到指定的文件中。…...
【Go】go连接clickhouse使用TCP协议
离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么 🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time&q…...

Emlog-Pro访问网站时需要密码验证插件
插件介绍 EmlogPro访问网站密码验证插件,为你的网站添加输入密码访问网站功能,在应用中的场景往往运用在为内部或是个人使用的页面里面,在访问的时候可以提示输入密码,做隐私保护。 下载地址: Emlog-Pro访问网站时需…...

Apache ShardingSphere数据分片弹性伸缩加解密中间件
Apache ShardingSphere Apache ShardingSphere 是一款分布式 SQL 事务和查询引擎,可通过数据分片、弹性伸缩、加密等能力对任意数据库进行增强。 软件背景 ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC、Sharding-Proxy和Sharding…...

Django+Vue家居全屋定制系统的设计与实现
目录 1 项目介绍2 项目截图3 核心代码3.1 需要的环境3.2 Django接口层3.3 实体类3.4 config.ini3.5 启动类3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者&…...

如何把自动获取的ip地址固定
在大多数网络环境中,设备通常会自动从DHCP服务器获取IP地址。这种动态分配IP的方式虽然灵活方便,但在某些特定场景下,我们可能需要将设备的IP地址固定下来,以确保网络连接的稳定性和可访问性。本文将详细介绍如何把自…...
Java应用的数据库死锁问题分析与解决
Java应用的数据库死锁问题分析与解决 大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 数据库死锁是多线程环境中常见的问题,尤其是在复杂的事务处理和数据访问中。死锁发生时&#x…...
ImportError: cannot import name ‘DglNodePropPredDataset‘ from ‘ogb.nodepropp
ImportError: cannot import name DglNodePropPredDataset from ogb.nodepropp 问题: 在跑深度学习时引入这个模块一直报错不能引入, 但看环境相关的包都安装好了,就是读取不到,时间还白白浪费。 解决办法 from ogb.nodeproppr…...
基于SSM(Spring、SpringMVC、MyBatis)框架的高校信息管理系统
基于SSM(Spring、SpringMVC、MyBatis)框架的高校信息管理系统是一个典型的Java Web应用开发项目。这类系统通常需要处理大量的学生、教师及课程信息,并提供相应的管理功能。下面是一个简化的设计方案,旨在帮助你理解如何构建这样的…...

C++第一节入门
一、历史 C是在C上继承拓展的! java是一家公司(甲骨文)借鉴C生成的! C#是微软借鉴java生成的! 二、命名空间 当我们定义一个名叫rand的变量,但是由于stdlib头文件里面有个函数跟rand重名!因此…...

全能型 AI 的崛起:未来的市场宠儿还是昙花一现?
近日,OpenAI 宣布将在秋季推出代号为“草莓”的新一代 AI 模型。这款 AI 被描述为全能型,从处理复杂的数学问题到应对主观性强的营销策略,它的能力可以覆盖多个领域。听起来像是科技界的“万能钥匙”,无论面对什么问题,…...

如何在PPT中插入已经绘制好的excel表格数据
1、新建一个演示文稿 2、点击“插入—对象” 3、点击“由文件创建—浏览” 4、浏览选择电脑上所处理好的excel表格数据 5、这样就可将excel表格数据插入PPT中...

微积分直觉:隐含微分
目录 一、介绍 二、梯子问题 三、结论 四、一个额外的例子 一、介绍 让我们想象一个半径为 5 的圆,以 xy 平面为中心。现在假设我们想在点 (3,4) 处找到一条切线到圆的斜率。 好吧,为了做到这一点,我们必须非常接近圆和…...
Matlab自学笔记三十五:表table数据与外部文件的读入和写出
1.首先新建一个表变量t xingming{zhangsan;lisi;wangwu}; xuehao{1001;1002;1003}; chengji[89 95;90 87;88 84]; ttable(xingming,xuehao,chengji) 2.把表t的数据写出到student.txt writetable(t,student.txt) %使用writetable函数写出数据到txt文件 3.从student.txt文…...

闯关leetcode——3.Longest Substring Without Repeating Characters
大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/longest-substring-without-repeating-characters/description/ 内容 Given a string s, find the length of the longest substring without repeating characters. Example 1: Input: s “abc…...
Android Radio2.0——公告注册及监听(三)
前面文章内容介绍了 Radio 相关功能的设置,我们知道可以通过设置来监听不同内容的广播公告,但是在开启对应功能的同时,还需要先注册对应公告监听,这里我们就来看一下广播公告监听的注册流程。 一、注册公告 1、接口封装 private final AtomicBoolean mHasRegisterTa = n…...

【C++】类和对象(三)再探构造函数|static成员函数|友元函数|内部类|匿名对象|对象拷贝时的编译优化
欢迎来到HarperLee的学习笔记! 一、再探构造函数 初始化列表:构造函数初始化的第二种方式(第一种是使用函数体内赋值)。使用方式:以一个冒号:开始,用逗号,分隔数据成员列表,每个成员变量后面跟…...

2024中国算力大会 2024 China Computational Power Conference
文章目录 一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题六、咨询 一、会议详情 二、重要信息 大会官网:https://ais.cn/u/vEbMBz提交检索:EI Compendex、IEEE Xplore、Scopus会议时间:2024年9月27-29日会议地点:…...
jEasyUI 扩展行显示细节
jEasyUI 扩展行显示细节 jEasyUI 是一个基于 jQuery 的前端框架,它提供了一系列的 UI 组件,使得 Web 应用的界面开发变得更加简单快捷。在 jEasyUI 的表格(datagrid)组件中,扩展行显示细节是一个常用的功能,它允许用户通过点击一行来展开更多的信息,这样可以有效地展示…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...