当前位置: 首页 > news >正文

基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练

基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练

参考地址:https://aistudio.baidu.com/projectdetail/8271882

基于python35+paddle120+env环境
预测可视化结果:
在这里插入图片描述

(一)安装环境:
先上传本地下载的源代码PaddleRS-develop.zip
解压PaddleRS-develop.zip到目录PaddleRS
然后分别执行下面安装命令!pip install

!unzip -q /home/aistudio/data/data191076/PaddleRS-develop.zip && mv PaddleRS-develop PaddleRS
!pip install matplotlib==3.4 scikit-image pycocotools -t /home/aistudio/external-libraries
!pip install  opencv-contrib-python -t /home/aistudio/external-libraries
!pip install -r PaddleRS/requirements.txt  -t /home/aistudio/external-libraries
!pip install -e PaddleRS/  -t /home/aistudio/external-libraries
!pip install paddleslim==2.6.0  -t /home/aistudio/external-libraries

添加环境组件

# 因为`sys.path`可能没有及时更新,这里选择手动更新
import sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')

(二)数据预处理tran_dataPre.py

%run tran_dataPre.py

(三)开始模型训练

%run trans.py

(四) tran_dataPre.py内容如下所示:

#先解压数据集
#!unzip -oq -d /home/aistudio/massroad /home/aistudio/data/data56961/mass_road.zip# 划分训练集/验证集/测试集,并生成文件名列表import random
import os.path as osp
from os import listdirimport cv2# 随机数生成器种子
RNG_SEED = 56961
# 调节此参数控制训练集数据的占比
TRAIN_RATIO = 0.9
# 数据集路径
DATA_DIR = '/home/aistudio/massroad'# 分割类别
CLASSES = ('background','road',
)def write_rel_paths(phase, names, out_dir, prefix):"""将文件相对路径存储在txt格式文件中"""with open(osp.join(out_dir, phase+'.txt'), 'w') as f:for name in names:f.write(' '.join([osp.join(prefix, 'input', name),osp.join(prefix, 'output', name)]))f.write('\n')random.seed(RNG_SEED)train_prefix = osp.join('road_segmentation_ideal', 'training')
test_prefix = osp.join('road_segmentation_ideal', 'testing')
train_names = listdir(osp.join(DATA_DIR, train_prefix, 'output'))
train_names = list(filter(lambda n: n.endswith('.png'), train_names))
test_names = listdir(osp.join(DATA_DIR, test_prefix, 'output'))
test_names = list(filter(lambda n: n.endswith('.png'), test_names))
# 对文件名进行排序,以确保多次运行结果一致
train_names.sort()
test_names.sort()
random.shuffle(train_names)
len_train = int(len(train_names)*TRAIN_RATIO)
write_rel_paths('train', train_names[:len_train], DATA_DIR, train_prefix)
write_rel_paths('val', train_names[len_train:], DATA_DIR, train_prefix)
write_rel_paths('test', test_names, DATA_DIR, test_prefix)# 写入类别信息
with open(osp.join(DATA_DIR, 'labels.txt'), 'w') as f:for cls in CLASSES:f.write(cls+'\n')print("数据集划分已完成。")# 将GT中的255改写为1,便于训练import os.path as osp
from glob import globimport cv2
from tqdm import tqdm# 数据集路径
# DATA_DIR = '/home/aistudio/massroad'train_prefix = osp.join('road_segmentation_ideal', 'training')
test_prefix = osp.join('road_segmentation_ideal', 'testing')train_paths = glob(osp.join(DATA_DIR, train_prefix, 'output', '*.png'))
test_paths = glob(osp.join(DATA_DIR, test_prefix, 'output', '*.png'))
for path in tqdm(train_paths+test_paths):im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)im[im>0] = 1# 原地改写cv2.imwrite(path, im)

(五) trans.py内容如下所示:

# 导入需要用到的库import random
import os.path as ospimport cv2
import numpy as np
import paddle
import paddlers as pdrs
from paddlers import transforms as T
from matplotlib import pyplot as plt
from PIL import Imageimport sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')# 定义全局变量# 随机种子
SEED = 56961
# 数据集存放目录
DATA_DIR = '/home/aistudio/massroad/'
# 训练集`file_list`文件路径
TRAIN_FILE_LIST_PATH = '/home/aistudio/massroad/train.txt'
# 验证集`file_list`文件路径
VAL_FILE_LIST_PATH = '/home/aistudio/massroad/val.txt'
# 测试集`file_list`文件路径
TEST_FILE_LIST_PATH = '/home/aistudio/massroad/test.txt'
# 数据集类别信息文件路径
LABEL_LIST_PATH = '/home/aistudio/massroad/labels.txt'
# 实验目录,保存输出的模型权重和结果
EXP_DIR =  '/home/aistudio/exp/'# 固定随机种子,尽可能使实验结果可复现random.seed(SEED)
np.random.seed(SEED)
paddle.seed(SEED)# 构建数据集# 定义训练和验证时使用的数据变换(数据增强、预处理等)
train_transforms = T.Compose([T.DecodeImg(),# 随机裁剪T.RandomCrop(crop_size=512),# 以50%的概率实施随机水平翻转T.RandomHorizontalFlip(prob=0.5),# 以50%的概率实施随机垂直翻转T.RandomVerticalFlip(prob=0.5),# 将数据归一化到[-1,1]T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),T.ArrangeSegmenter('train')
])eval_transforms = T.Compose([T.DecodeImg(),T.Resize(target_size=1500),# 验证阶段与训练阶段的数据归一化方式必须相同T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),T.ArrangeSegmenter('eval')
])# 分别构建训练和验证所用的数据集
train_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=TRAIN_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=train_transforms,num_workers=4,shuffle=True
)val_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=VAL_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=eval_transforms,num_workers=0,shuffle=False
)# 构建DeepLab V3+模型,使用ResNet-50作为backbone
model = pdrs.tasks.seg.DeepLabV3P(in_channels=3,num_classes=len(train_dataset.labels),backbone='ResNet50_vd'
)
model.initialize_net(pretrain_weights='CITYSCAPES',save_dir=osp.join(EXP_DIR, 'pretrain'),resume_checkpoint=None,is_backbone_weights=False
)# 构建优化器
optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.net.parameters()
)# 执行模型训练
model.train(num_epochs=100,train_dataset=train_dataset,train_batch_size=8,eval_dataset=val_dataset,optimizer=optimizer,save_interval_epochs=10,# 每多少次迭代记录一次日志log_interval_steps=30,save_dir=EXP_DIR,# 是否使用early stopping策略,当精度不再改善时提前终止训练early_stop=False,# 是否启用VisualDL日志功能use_vdl=True,# 指定从某个检查点继续训练resume_checkpoint=None
)

(六)训练生成过程信息

Output exceeds the size limit. Open the full output data in a text editor
2024-09-05 14:16:51 [INFO]	Loading pretrained model from /home/aistudio/exp/pretrain/model.pdparams
2024-09-05 14:16:53 [WARNING]	[SKIP] Shape of parameters head.decoder.conv.weight do not match. (pretrained: [19, 256, 1, 1] vs actual: [2, 256, 1, 1])
2024-09-05 14:16:53 [WARNING]	[SKIP] Shape of parameters head.decoder.conv.bias do not match. (pretrained: [19] vs actual: [2])
2024-09-05 14:16:53 [INFO]	There are 358/360 variables loaded into DeepLabV3P.
2024-09-05 14:17:46 [INFO]	[TRAIN] Epoch=1/100, Step=30/90, loss=0.133503, lr=0.001000, time_each_step=1.77s, eta=4:24:32
2024-09-05 14:18:25 [INFO]	[TRAIN] Epoch=1/100, Step=60/90, loss=0.181917, lr=0.001000, time_each_step=1.31s, eta=3:14:53
2024-09-05 14:19:02 [INFO]	[TRAIN] Epoch=1/100, Step=90/90, loss=0.112567, lr=0.001000, time_each_step=1.22s, eta=3:2:6
2024-09-05 14:19:03 [INFO]	[TRAIN] Epoch 1 finished, loss=0.15933047160506247 .
2024-09-05 14:19:44 [INFO]	[TRAIN] Epoch=2/100, Step=30/90, loss=0.141528, lr=0.001000, time_each_step=1.36s, eta=3:22:2
2024-09-05 14:20:20 [INFO]	[TRAIN] Epoch=2/100, Step=60/90, loss=0.165187, lr=0.001000, time_each_step=1.22s, eta=3:0:42
2024-09-05 14:20:57 [INFO]	[TRAIN] Epoch=2/100, Step=90/90, loss=0.145009, lr=0.001000, time_each_step=1.22s, eta=2:59:1
2024-09-05 14:20:58 [INFO]	[TRAIN] Epoch 2 finished, loss=0.1168842613697052 .
2024-09-05 14:21:39 [INFO]	[TRAIN] Epoch=3/100, Step=30/90, loss=0.126603, lr=0.001000, time_each_step=1.38s, eta=3:22:13
2024-09-05 14:22:16 [INFO]	[TRAIN] Epoch=3/100, Step=60/90, loss=0.117296, lr=0.001000, time_each_step=1.22s, eta=2:58:14
2024-09-05 14:22:53 [INFO]	[TRAIN] Epoch=3/100, Step=90/90, loss=0.072859, lr=0.001000, time_each_step=1.23s, eta=2:58:46
2024-09-05 14:22:53 [INFO]	[TRAIN] Epoch 3 finished, loss=0.10787189056475957 .
2024-09-05 14:23:34 [INFO]	[TRAIN] Epoch=4/100, Step=30/90, loss=0.081685, lr=0.001000, time_each_step=1.37s, eta=3:18:39
2024-09-05 14:24:11 [INFO]	[TRAIN] Epoch=4/100, Step=60/90, loss=0.087735, lr=0.001000, time_each_step=1.23s, eta=2:57:28
2024-09-05 14:24:48 [INFO]	[TRAIN] Epoch=4/100, Step=90/90, loss=0.084795, lr=0.001000, time_each_step=1.22s, eta=2:55:44
2024-09-05 14:24:49 [INFO]	[TRAIN] Epoch 4 finished, loss=0.10476481277081702 .
2024-09-05 14:25:30 [INFO]	[TRAIN] Epoch=5/100, Step=30/90, loss=0.098625, lr=0.001000, time_each_step=1.37s, eta=3:16:59
2024-09-05 14:26:07 [INFO]	[TRAIN] Epoch=5/100, Step=60/90, loss=0.078188, lr=0.001000, time_each_step=1.24s, eta=2:57:12
2024-09-05 14:26:43 [INFO]	[TRAIN] Epoch=5/100, Step=90/90, loss=0.098015, lr=0.001000, time_each_step=1.21s, eta=2:52:11
2024-09-05 14:26:44 [INFO]	[TRAIN] Epoch 5 finished, loss=0.10311256903741095 .
2024-09-05 14:27:25 [INFO]	[TRAIN] Epoch=6/100, Step=30/90, loss=0.109136, lr=0.001000, time_each_step=1.38s, eta=3:16:8
...
2024-09-05 15:39:38 [INFO]	Start to evaluate (total_samples=81, total_steps=81)...
2024-09-05 15:40:14 [INFO]	[EVAL] Finished, Epoch=40, miou=0.716638, category_iou=[0.96831487 0.46496069], oacc=0.969164, category_acc=[0.97447995 0.81316509], kappa=0.619485, category_F1-score=[0.98390241 0.63477565] .
2024-09-05 15:40:14 [INFO]	Current evaluated best model on eval_dataset is epoch_10, miou=0.7255623401044613
2024-09-05 15:40:18 [INFO]	Model saved in /home/aistudio/exp/epoch_40.

(七) 测试集预测结果:

# 构建测试集
test_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=TEST_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=eval_transforms,num_workers=0,shuffle=False
)# 为模型加载历史最佳权重
state_dict = paddle.load(osp.join(EXP_DIR, 'best_model/model.pdparams'))
model.net.set_state_dict(state_dict)# 执行测试
test_result = model.evaluate(test_dataset)
print("测试集上指标:IoU为{:.2f},Acc为{:.2f},Kappa系数为{:.2f}, F1为{:.2f}".format(test_result['category_iou'][1], test_result['category_acc'][1],test_result['kappa'],test_result['category_F1-score'][1])
)
2024-09-05 20:07:40 [INFO]	13 samples in file /home/aistudio/massroad/test.txt
2024-09-05 20:07:41 [INFO]	Start to evaluate (total_samples=13, total_steps=13)...
测试集上指标:IoU为0.47,Acc为0.82,Kappa系数为0.62, F1为0.64

(八)预测结果可视化情况:

# 预测结果可视化
# 重复运行本单元可以查看不同结果def read_image(path):im = cv2.imread(path)return im[...,::-1]def show_images_in_row(ims, fig, title='', quantize=False):n = len(ims)fig.suptitle(title)axs = fig.subplots(nrows=1, ncols=n)for idx, (im, ax) in enumerate(zip(ims, axs)):# 去掉刻度线和边框ax.spines['top'].set_visible(False)ax.spines['right'].set_visible(False)ax.spines['bottom'].set_visible(False)ax.spines['left'].set_visible(False)ax.get_xaxis().set_ticks([])ax.get_yaxis().set_ticks([])if isinstance(im, str):im = read_image(im)if quantize:im = (im*255).astype('uint8')if im.ndim == 2:im = np.tile(im[...,np.newaxis], [1,1,3])ax.imshow(im)# 需要展示的样本个数
num_imgs_to_show = 4
# 随机抽取样本
chosen_indices = random.choices(range(len(test_dataset)), k=num_imgs_to_show)# 参考 https://stackoverflow.com/a/68209152
fig = plt.figure(constrained_layout=True)
fig.suptitle("Test Results")subfigs = fig.subfigures(nrows=3, ncols=1)# 读取输入影像并显示
im_paths = [test_dataset.file_list[idx]['image'] for idx in chosen_indices]
show_images_in_row(im_paths, subfigs[0], title='Image')# 获取模型预测输出
with paddle.no_grad():model.net.eval()preds = []for idx in chosen_indices:input, mask = test_dataset[idx]input = paddle.to_tensor(input["image"]).unsqueeze(0)logits, *_ = model.net(input)pred = paddle.argmax(logits[0], axis=0)preds.append(pred.numpy())
show_images_in_row(preds, subfigs[1], title='Pred', quantize=True)# 读取真值标签并显示
im_paths = [test_dataset.file_list[idx]['mask'] for idx in chosen_indices]
show_images_in_row(im_paths, subfigs[2], title='GT', quantize=True)# 渲染结果
fig.canvas.draw()
Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())

在这里插入图片描述
(九) 导出静态模型
训练后保存的模型为动态模型,布署发布模型为静态模型,因此需要导出操作

import matplotlib.pyplot as plt
import random
import cv2
import numpy as np
import paddle
import paddlers as pdrs
from PIL import Imageimport os
from paddlers.tasks import load_modelmodel_path =  './exp/best_model'img_14="i:/cwgis_ai/cup/mass_road/road_segmentation_ideal/testing/input/img-14.png"
img_10="i:/cwgis_ai/cup/mass_road/road_segmentation_ideal/testing/input/img-10.png"#save_dir="./models/road_infer_model_100"
save_dir="./models/road_infer_model_100_custom"# export model OK
# Set environment variables
os.environ['PADDLEX_EXPORT_STAGE'] = 'True'
os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'# Load model from directory
model = load_model(model_path)#fixed_input_shape = None
#fixed_input_shape = [1500,1500]
fixed_input_shape = [17761,25006]      #[w,h]# Do dynamic-to-static cast   动态到静态的转换
# XXX: Invoke a protected (single underscore) method outside of subclasses.
model.export_inference_model(save_dir, fixed_input_shape)

(十) 预测单张图片代码

import matplotlib.pyplot as plt
import random
import cv2
import numpy as np
import paddle
import paddlers as pdrs
from PIL import Imageimport os
from paddlers.tasks import load_model# 因为`sys.path`可能没有及时更新,这里选择手动更新
import sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')img_14="./massroad/road_segmentation_ideal/testing/input/img-14.png"
img_10="./massroad/road_segmentation_ideal/testing/input/img-10.png"
img_5="./massroad/road_segmentation_ideal/testing/input/img-5.png"customImg="./customImage/DeepLearning_Image.png"    #file tif to png #model_dir="./models/road_infer_model_100"
#model_dir="./models/road_infer_model_100_None"
model_dir="./models/road_infer_model_100_custom"#model = pdrs.deploy.Predictor(model_dir)
model = pdrs.deploy.Predictor(model_dir,use_gpu=True)# 读取输入影像并显示
im_paths = [customImg]
im_lis = []
for name in im_paths:print(name)img = cv2.imread(name)      print(img.shape) #img = paddle.to_tensor(img) #.unsqueeze(0)   #标量输入im_lis.append(img)
# 获取模型预测输出img_file=img_10
preds = []
results = model.predict(im_lis)
#print(results)label_map=results[0]["label_map"]
#print(label_map)
label_map[label_map>0] = 255
cv2.imwrite('./outImage/label_map_custom.png', label_map)score_map=results[0]["score_map"]
#cv2.imwrite('./outImage/score_map.png', score_map[0])
print(score_map)print("预测完成")

本blog地址:https://blog.csdn.net/hsg77

相关文章:

基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练

基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练 参考地址:https://aistudio.baidu.com/projectdetail/8271882 基于python35paddle120env环境 预测可视化结果: (一)安装环境: 先上传本地下载的源代码Pad…...

【 C++ 】C/C++内存管理

前言: 😘我的主页:OMGmyhair-CSDN博客 目录 一、C/C内存分布 二、C语言中动态内存管理方式:malloc/calloc/realloc/free malloc: calloc: realloc: free: 三、C内存管理方式…...

智能客服的演变:从传统到向量数据库的新时代

国产数据库的发展在21世纪初取得了显著的进展。根据不完全统计,目前在国内已有超过300种不同的数据库在案。这一现象在40年前几乎是不可想象的,标志着中国在数据库领域取得了巨大的突破和多样化选择。对于对老一辈的故事或数据库发展史充满兴趣的朋友们&…...

python使用超级鹰识别验证码

1.超级鹰注册 超级鹰: https://www.chaojiying.com/ 注册后购买题分 2.获取要识别的图片 我们以这个附件下载的网页为例: https://gh.lnut.edu.cn/system/_content/download.jsp?urltypenews.DownloadAttachUrl&owner1224556702&wbfileid1504223 点开f12然后刷新几…...

基于YOLO目标检测实现表情识别(结合计算机视觉与深度学习的创新应用)

基于YOLO(You Only Look Once)的目标检测技术实现的表情识别项目是一个结合了计算机视觉与深度学习的创新应用。该项目旨在通过分析人脸图像或视频流中的面部特征来识别七种基本人类情感表达:愤怒(Angry)、厌恶&#x…...

Keil导入包出错

1.菜单栏找不到GD系列? 随便新建一个工程,将project用记事本打开后如图2所示。再将别人给的代码工程用记事本打开,发现别人给的工程少了这两行,所以复制粘贴到别人给的工程记事本中,保存刷新后重新打开,就…...

超声波自动气象站

超声波自动气象站的功能优势可以包括以下几个方面: 高精度测量:超声波自动气象站采用超声波技术进行测量,可以实现高精度的测量结果,能够准确地测量气温、湿度、风速、风向等气象参数。 高可靠性:超声波自动气象站采用…...

Mysql事件操作

查看是否开启事件 SELECT event_scheduler; SHOW VARIABLES LIKE %event_scheduler%; 开启或关闭事件 SET GLOBAL event_scheduler 1; SET GLOBAL event_scheduler on; SET GLOBAL event_scheduler 0; SET GLOBAL event_scheduler off; 创建事件sql CREATE EVENT IF…...

Python必知必会:程序员必须知道的22个Python单行代码!

今天给大家分享24个每个Python程序员都必须知道的单行代码,帮你写出更简洁、更优雅、更高效的代码。 1. 列表推导式 列表推导式(List Comprehensions)可以提供一种简洁的方式创建列表。相较于传统的循环,列表推导式更高效、可读…...

MongoDB 的适用场景

MongoDB 的适用场景 MongoDB 是一种基于文档存储的 NoSQL 数据库,与传统的关系型数据库不同,它使用 JSON 类似的二进制文档格式(BSON)来存储数据,并且具备灵活的文档模型、强大的查询能力和水平扩展性。这些特性使得 …...

汽车EDI:montaplast EDI对接

Montaplast 是一家总部位于德国的全球知名汽车零部件供应商,专注于高精度塑料部件的设计、开发和生产。公司成立于1958年,主要为汽车行业提供轻量化、高性能的塑料解决方案。Montaplast 以其在注塑成型技术、表面处理和装配技术方面的专业能力而著称&…...

【idea】设置文件模板

搜索 File and Code Templates 。 添加模板。 在任意文件目录下右键,new->找到添加的模板。 参考链接: IDEA创建模板文件_edit file templates-CSDN博客...

时间戳和日期相互转换+检验日期合法性功能C语言

H文件 #ifndef _TIME_H_ #define _TIME_H_ #include "config.h" #include "DisplayR300.h" #include "DWIN_Fun.h" #include "DWIN_UI.h" #include <string.h>typedef struct {u16 year; /* 定义时间:年 */u8 month; /* 定义…...

SPIRNGBOOT+VUE实现浏览器播放音频流并合成音频

一、语音合成支持流式返回&#xff0c;通过WS可以实时拿到音频流&#xff0c;那么我们如何在VUE项目中实现合成功能呢。语音合成应用非常广泛&#xff0c;如商家广告合成、驾校声音合成、新闻播报、在线听书等等场景都会用到语音合成。 二、VUE下实现合成并使用浏览器播放代码…...

C#绘制常用工业控件(仪表盘,流动条,开关等)

目录 1&#xff0c;使用Graphics绘制Toggle。 效果&#xff1a; 测试代码&#xff1a; Toggle控件代码&#xff1a; 2&#xff0c;使用Graphics绘制Switch。 效果&#xff1a; 测试代码&#xff1a; Switch控件代码&#xff1a; 3&#xff0c;使用Graphics绘制PanelHe…...

Ps:颜色模型、色彩空间及配置文件

颜色模型、色彩空间和配置文件是处理颜色的核心概念。它们虽然互相关联&#xff0c;但各自有不同的功能和作用。 通过理解这些概念及其关系&#xff0c;Photoshop 用户可以更好地管理和优化图像处理流程&#xff0c;确保颜色在不同设备和应用中的一致性和准确性。 颜色模型 Col…...

llvm后端之td定义指令信息

llvm后端之td定义指令信息 引言1 定义指令2 定义Operand3 定义SDNode4 PatFrags4.1 ImmLeaf4.2 PatLeaf 5 ComplexPattern6 谓词条件7 理解dag 引言 llvm后端通过td定义指令信息&#xff0c;并通过dag匹配将IR节点转换为平台相关的指令。 1 定义指令 td通过class Instructio…...

战地机房集装箱数据中心可视化:实时监控与管理

通过图扑可视化技术实时监控战地机房集装箱数据中心的各项运行指标和环境参数&#xff0c;提高部署效率和设备管理能力&#xff0c;确保数据中心稳定运行。...

Linux入门攻坚——31、rpc概念及nfs和samba

NFS&#xff1a;Network File System 传统意义上&#xff0c;文件系统在内核中实现 RPC&#xff1a;函数调用&#xff08;远程主机上的函数&#xff09;&#xff0c;Remote Procedure Call protocol 一部分功能由本地程序完成 另一部分功能由远程主机上的 NFS本质…...

内网穿透的应用-本地化部署Elasticsearch平替工具OpenObserve并实现无公网IP远程分析数据

文章目录 前言1. 安装Docker2. Docker镜像源添加方法3. 创建并启动OpenObserve容器4. 本地访问测试5. 公网访问本地部署的OpenObserve5.1 内网穿透工具安装5.2 创建公网地址 6. 配置固定公网地址 前言 本文主要介绍如何在Linux系统使用Docker快速本地化部署OpenObserve云原生可…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...