当前位置: 首页 > news >正文

基于人工智能的智能安防监控系统

 

目录

  1. 引言
  2. 项目背景
  3. 环境准备
    • 硬件要求
    • 软件安装与配置
  4. 系统设计
    • 系统架构
    • 关键技术
  5. 代码示例
    • 数据采集与预处理
    • 模型训练与预测
    • 实时监控与检测
  6. 应用场景
  7. 结论

1. 引言

随着科技的发展,智能安防监控系统逐渐成为家庭、企业和公共场所保障安全的核心工具。通过人工智能和计算机视觉技术,系统可以实时监控摄像头拍摄到的画面,自动识别异常情况如入侵、打斗、火灾等,并及时发出警报,提升安防效率。本文介绍如何构建一个基于人工智能的智能安防监控系统。

2. 项目背景

传统的安防监控依赖于人工操作,监控人员难以实时关注所有画面,容易漏掉安全隐患。而基于AI的智能监控系统能够自动检测并分析视频流中的异常行为,减少人为监控的负担,及时应对安全威胁。通过深度学习技术,系统可以学习识别特定的行为模式,如入侵、人员徘徊等,提高安全监控的智能化水平。

3. 环境准备

硬件要求

  • CPU:四核及以上
  • 内存:16GB及以上
  • 硬盘:至少100GB可用空间
  • 摄像头:高清摄像头,用于实时视频采集
  • GPU(推荐):NVIDIA GPU,支持CUDA,用于加速模型训练和实时检测

软件安装与配置

  1. 操作系统:Ubuntu 20.04 LTS 或 Windows 10

  2. Python:建议使用 Python 3.8 或以上版本

  3. Python虚拟环境

    python3 -m venv smart_security_env
    source smart_security_env/bin/activate  # Linux
    .\smart_security_env\Scripts\activate  # Windows
    

    依赖安装

    pip install tensorflow keras numpy opencv-python matplotlib scikit-learn
    

4. 系统设计

系统架构

智能安防监控系统主要由以下模块组成:

  • 数据采集模块:通过摄像头实时采集监控区域的视频数据。
  • 异常检测与行为识别模块:利用深度学习模型实时分析视频流,识别入侵、徘徊、打斗等异常行为。
  • 报警与响应模块:当检测到异常情况时,系统自动触发报警,向用户发送通知。
  • 数据存储模块:将检测到的异常视频片段存储,供后续审查和分析。

关键技术

  • 目标检测与跟踪:通过YOLO、SSD等目标检测算法,识别和跟踪监控画面中的人或物体。
  • 行为识别:基于卷积神经网络(CNN)和长短时记忆网络(LSTM)对视频帧进行分析,识别异常行为,如人员徘徊、打斗等。
  • 报警系统:当系统检测到异常行为时,通过API向安防人员发送警报,或自动激活现场报警器。

5. 代码示例

数据采集与预处理

 

import cv2# 打开摄像头,捕捉实时视频
cap = cv2.VideoCapture(0)# 读取摄像头画面并显示
while True:ret, frame = cap.read()if ret:cv2.imshow('Real-time Monitoring', frame)# 按下'q'键退出if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:breakcap.release()
cv2.destroyAllWindows()

模型训练与预测

import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, LSTM# 构建用于行为识别的深度学习模型
def build_behavior_model():model = Sequential()model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Conv2D(64, (3, 3), activation='relu'))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dense(3, activation='softmax'))  # 3种行为:正常、徘徊、打斗model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])return model# 训练数据准备(模拟)
X_train = np.random.rand(1000, 64, 64, 3)  # 模拟视频帧数据
y_train = np.random.randint(0, 3, 1000)  # 模拟行为标签(0:正常,1:徘徊,2:打斗)# 标签转换为one-hot编码
y_train = tf.keras.utils.to_categorical(y_train, num_classes=3)# 构建并训练模型
model = build_behavior_model()
model.fit(X_train, y_train, epochs=10, batch_size=32)

实时监控与检测

# 加载预训练模型进行行为识别
def detect_behavior(frame):# 将视频帧调整为模型输入大小frame = cv2.resize(frame, (64, 64))frame = np.expand_dims(frame, axis=0)# 使用模型预测行为predictions = model.predict(frame)behavior = np.argmax(predictions)# 返回行为类别if behavior == 0:return "Normal"elif behavior == 1:return "Loitering"elif behavior == 2:return "Fight"else:return "Unknown"# 实时视频监控并进行行为检测
cap = cv2.VideoCapture(0)while True:ret, frame = cap.read()if ret:behavior = detect_behavior(frame)cv2.putText(frame, f'Behavior: {behavior}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)cv2.imshow('Real-time Monitoring with Behavior Detection', frame)# 按下'q'键退出if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:breakcap.release()
cv2.destroyAllWindows()

⬇帮大家整理了人工智能的资料

包括人工智能的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多人工智能详细资料

问题讨论,人工智能的资料领取可以私信!

 

6. 应用场景

  • 家庭安防:监控家中异常情况,如入侵、火灾、宠物行为异常等,并及时发送报警通知。
  • 企业安全管理:监控企业工厂、仓库等场所,识别人员的异常行为,并保障财产安全。
  • 公共安全:在公共场所如车站、商场中应用,实时监控并识别异常行为,帮助预防犯罪和意外事件。

7. 结论

智能安防监控系统结合人工智能和计算机视觉技术,可以有效提升安全监控的自动化水平。通过实时分析视频流,系统能够识别异常行为并及时响应,有助于提高家庭、企业和公共场所的安全性。随着深度学习技术的进一步发展,智能安防系统将会更加精准、可靠,为社会提供更全面的安全保障。

相关文章:

基于人工智能的智能安防监控系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据采集与预处理模型训练与预测实时监控与检测应用场景结论 1. 引言 随着科技的发展,智能安防监控系统逐渐成为家庭、企业和公共场所保障安全的核心工具。通过人工智能和计…...

分享从零开始学习网络设备配置--任务6.3 使用基本ACL限制网络访问

任务描述 某公司构建了互联互通的办公网,为保护公司内网用户数据的安全,该公司实施内网安全防范措施。公司分为经理部、财务部和销售部,分属3个不同的网段,3个部门之间用路由器进行信息传递。为了安全起见,公司领导要求…...

数据结构——线性表(静态链表、循环链表以及双向链表)

1、静态链表 用数组描述的链表叫做静态链表,这种描述方法叫做游标实现法。 静态链表需要对数组的第一个和最后一个元素作为特殊元素处理,不存数据。 最后一个指向第一个有数据的下标地址,第一个游标指向第一个没有数据的下标地址。 我们对…...

vue3_对接腾讯_实时音视频

项目需要对接腾讯的实时音视频产品,我这里选择的是多人会议,选择其他实时音视频产品对接流程也一样,如何对接腾讯实时音视频的多人会议产品,从开通服务到对接完成,一 一讲解。 一、开通腾讯实时音视频 1.腾讯实时音视…...

一台电脑对应一个IP地址吗?‌探讨两台电脑共用IP的可能性

在当今数字化时代,‌IP地址作为网络世界中的“门牌号”,‌扮演着至关重要的角色。‌它负责在网络上唯一标识每一台设备,‌使得数据能够在庞大的互联网中准确无误地传输。‌然而,‌对于IP地址与电脑之间的对应关系,‌许…...

XInput手柄输入封装

功能全面地封装了XInput的输入, 1. 普通按钮按下, 按住, 弹起状态检查, 2. 摇杆4个方向的按下, 按住, 弹起检查 3. 按键状态变化检测并且记录按下触发时间, 按住保持时间, 方便用来完全自定义的输入功能 4. 多手柄输入合并 CXinputHelper.h #pragma once #include <win…...

NodeMCU-ESP8266+flash_download_tool_3.9.7 烧录

USB-TTL 接 NodeMCU的RXD0, TXD0, GND 例程hello_world&#xff1a; Eclipse编译信息&#xff1a; python /d/ESP/ESP8266_RTOS_SDK/ESP8266_RTOS_SDK/components/esptool_py/esptool/esptool.py --chip esp8266 --port COM6 --baud 115200 --before default_reset --after …...

首例开源的自动驾驶混合运动规划框架,手握“规划可解释”和“决策准确”两张王牌!

导读&#xff1a; 本文开发了一种新的混合运动规划方法&#xff0c;将环境和预测信息集成在Frenet坐标系中&#xff0c;提升了运动规划能力。本文将传统运动规划算法的可预测性和稳定性与RL的动态适应性相结合&#xff0c;从而形成了一个能够有效管理复杂情况并适应不断变化的环…...

数据结构之红黑树的 “奥秘“

目录&#xff1a; 一.红黑树概念 二. 红黑树的性质 三.红黑树的实现 四.红黑树验证 五.AVL树和红黑树的比较 一.红黑树概念 1.红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或Black。 通过对任何 一条从根…...

【鸿蒙 HarmonyOS NEXT】使用EventHub进行数据通信

✨本人自己开发的开源项目&#xff1a;土拨鼠充电系统 ✨踩坑不易&#xff0c;还希望各位大佬支持一下&#xff0c;在GitHub给我点个 Start ⭐⭐&#x1f44d;&#x1f44d; ✍GitHub开源项目地址&#x1f449;&#xff1a;https://github.com/cheinlu/groundhog-charging-syst…...

大模型RAG实战|构建知识库:文档和网页的加载、转换、索引与存储

我们要开发一个生产级的系统&#xff0c;还需要对LlamaIndex的各个组件和技术进行深度的理解、运用和调优。本系列将会聚焦在如何让系统实用上&#xff0c;包括&#xff1a;知识库的管理&#xff0c;检索和查询效果的提升&#xff0c;使用本地化部署的模型等主题。我将会讲解相…...

江协科技stm32————11-5 硬件SPI读写W25Q64

一、开启时钟&#xff0c;开启SPI和GPIO的时钟 二、初始化GPIO口&#xff0c;其中SCK和MOSI是由硬件外设控制的输出信号&#xff0c;配置为复用推挽输出 MISO是硬件外设的输入信号&#xff0c;配置为上拉输入&#xff0c;SS是软件控制的输出信号&#xff0c;配置为通用推挽输出…...

网络编程day04(UDP、Linux IO 模型)

目录 【1】UDP 1》通信流程 2》函数接口 1> recvfrom 2> sendto 3》代码展示 1> 服务器代码 2> 客户端代码 【2】Linux IO 模型 场景假设一 1》阻塞式IO&#xff1a;最常见、效率低、不耗费CPU 2》 非阻塞 IO&#xff1a;轮询、耗费CPU&#xff0c;可以处…...

【android10】【binder】【2.servicemanager启动——全源码分析】

系列文章目录 可跳转到下面链接查看下表所有内容https://blog.csdn.net/handsomethefirst/article/details/138226266?spm1001.2014.3001.5501文章浏览阅读2次。系列文章大全https://blog.csdn.net/handsomethefirst/article/details/138226266?spm1001.2014.3001.5501 目录 …...

Java实现简易计算器功能(idea)

目的&#xff1a;写一个计算器&#xff0c;要求实现加减乘除功能&#xff0c;并且能够循环接收新的数据&#xff0c;通过用户交互实现。 思路&#xff1a; &#xff08;1&#xff09;写4个方法&#xff1a;加减乘除 &#xff08;2&#xff09;利用循环switch进行用户交互 &…...

Parsec问题解决方案

Parsec目前就是被墙了&#xff0c;有解决方案但治标不治本&#xff0c;如果想稳定串流建议是更换稳定的串流软件&#xff0c;以下是一些解决方案 方案一&#xff1a;在%appdata%/Parsec/config.txt中&#xff0c;添加代理 app_proxy_address 127.0.0.1 app_proxy_scheme http…...

Swift 创建扩展(Extension)

类别(Category) 和 扩展(Extension) 的 用法很多. 常用的 扩展(Extension) 有分离代码和封装模块的功能,例如登陆页面有注册功能,有登陆功能,有找回密码功能,都写在一个页面就太冗余了,可以考虑使用 扩展(Extension) 登陆页面的方法来分离代码 本文介绍Swift 如何创建扩展(Ex…...

九月五日(k8s配置)

一、安装环境 环境准备&#xff1a;&#xff08;有阿里云&#xff09; k8s-master 192.168.1.11 k8s-node1 192.168.1.22 k8s-node2 192.168.1.33 二、前期准备 在k8s-master主机 [rootk8s-master ~]# vim /etc/hosts …...

某极验4.0 -消消乐验证

⚠️前言⚠️ 本文仅用于学术交流。 学习探讨逆向知识&#xff0c;欢迎私信共享学习心得。 如有侵权&#xff0c;联系博主删除。 请勿商用&#xff0c;否则后果自负。 网址 aHR0cHM6Ly93d3cyLmdlZXRlc3QuY29tL2FkYXB0aXZlLWNhcHRjaGE 1. 浅聊一下 验证码样式 验证成功 - …...

洛谷 P10798 「CZOI-R1」消除威胁

题目来源于&#xff1a;洛谷 题目本质&#xff1a;贪心&#xff0c;st表&#xff0c;单调栈 解题思路&#xff1a;由于昨天联练习了平衡树&#xff0c;我就用平衡树STL打了个暴力&#xff0c;超时得了30分 这是暴力代码&#xff1a; #include<bits/stdc.h> using name…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...