tensorflow-线性回归python入门
目录
读入库
构造数据
建立训练和测试数据
创建第一层到最后一层的神经网络
开始测试
sin函数回归
读入库
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import time
构造数据
X = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
Y = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
建立训练和测试数据
import sklearn.model_selection as sk
X_train, X_test, Y_train, Y_test =sk.train_test_split(X,Y,test_size=0.2, random_state = 42)
创建第一层到最后一层的神经网络
model = tf.contrib.keras.models.Sequential()
model.add(tf.contrib.keras.layers.Dense(units=1, activation=tf.nn.relu,input_dim=1))
model.summary()
# 開始搭建 model
# mse = mean square error
# sgd = stochastic gradient descent
model.compile(loss='mse',optimizer='sgd',metrics=['accuracy'])model.fit(X_test, Y_test,epochs=4000,batch_size=len(Y_test))
开始测试
print("start testing")
cost = model.evaluate(X_test, Y_test)
print("test cost: {}".format(cost))
weights, biases = model.layers[0].get_weights()
print("Weights = {}, bias = {}".format(weights,biases))
打印测试结果
# 印出測試的結果
Y_pred = model.predict(X_test)
# 畫出 data
plt.scatter(X,Y, label='X,Y')
plt.scatter(X_test, Y_test, label='X_test, Y_test')
plt.scatter(X_test, Y_pred, label='pred')
# 畫出 線
x2 = np.linspace(0,1,100)
print(biases[0])
print(weights[0])y2 =(weights[0]*x2+biases[0])
plt.plot(x2, y2, '-r', label='weights')plt.show()
sin函数回归
np.random.seed(int(time.time())) 生成随机数
num=100 随机数100个
X = np.linspace(-4,4,num) 进行线性等分
np.random.shuffle(X) 打乱
Y = 0.1*np.sin(X) 计算变量
#!/usr/bin/env python
# -*- coding=utf-8 -*-
import tensorflow as tf
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import time# 製造 data (共200筆)
np.random.seed(int(time.time()))
num=100
X = np.linspace(-4,4,num)
np.random.shuffle(X)
Y = 0.1*np.sin(X)# 建立 trainig 與 testing datax_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.1)# 建立 neural network from the first layer to last layermodel = tf.keras.models.Sequential([tf.keras.layers.Dense(units=100, activation=tf.nn.tanh, input_dim=1),tf.keras.layers.Dense(units=100, activation=tf.nn.tanh),tf.keras.layers.Dense(units=1, activation=tf.nn.tanh),
])# 除了第一層以外,定義第二層以上時,不需要定義 input dimension,因為第二層 input 就是第一層的 input# 開始搭建 model
# mse = mean square error
# sgd = stochastic gradient descent
model.compile(loss='mse',optimizer='sgd', metrics=['acc'])# training
print("start training")
for step in range(20000):cost = model.train_on_batch(x_train, y_train) #if step % 20 == 0:#print("train cost{}".format(cost))W, b = model.layers[0].get_weights()print("step{} Weights = {}, bias = {} train cost{}".format(step,W, b, cost))plt.cla()# 畫出 dataplt.scatter(X, Y)#X_test2=[-1,1]y_pred2 = model.predict(X) # Y predictplt.scatter(X, y_pred2, color='blue')plt.text(0, -0.05, 'epoch: %d ,cost=%.2f '% (step,cost[0]), fontdict={'size': 10, 'color': 'red'})plt.pause(0.01)
其他数据训练示例
#!/usr/bin/env python
# -*- coding=utf-8 -*-
import tensorflow as tf
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import time
import pandas as pd
from tensorflow.keras.datasets import boston_housing
import matplotlib.pyplot as plt
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
print(x_train.shape)
print(y_train.shape)
classes = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
data = pd.DataFrame(x_train, columns=classes)
print(data.head())
data['MEDV'] = pd.Series(data=y_train)
print(data.head())
print(data.describe()) # get some basic stats on the dataset
import seaborn as sns
from sklearn import preprocessing
scaler = preprocessing.MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
model =tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(320, activation='relu', input_shape=[x_train.shape[1]]))
model.add(tf.keras.layers.Dense(640, activation='relu'))
model.add(tf.keras.layers.Dense(640, activation='relu'))
model.add(tf.keras.layers.Dense(1))
try:
with open('model2.h5', 'r') as load_weights:
# 讀取模型權重
model.load_weights("model2.h5")
except IOError:
print("File not exists")
learning_rate = 0.0001
opt1 = tf.keras.optimizers.Nadam(lr=learning_rate)
model.compile(loss='mse', optimizer=opt1, metrics=['mae'])
history1 = []
for step in range(40000):
cost = model.train_on_batch(x_train, y_train)
if step % 20 == 0:
print("step{} train cost{}".format(step, cost))
# 保存模型架構
with open("model2.json", "w") as json_file:
json_file.write(model.to_json())
# 保存模型權重
model.save_weights("model2.h5")
# testing
print("start testing")
cost = model.evaluate(x_test, y_test)
print("test cost: {}".format(cost))
Y_pred2 = model.predict(x_test) # Y predict
print(Y_pred2[:10])
print(y_test[:10])
相关文章:
tensorflow-线性回归python入门
目录 读入库 构造数据 建立训练和测试数据 创建第一层到最后一层的神经网络 开始测试 sin函数回归 读入库 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import time 构造数据 X np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, …...
VSCode学习笔记
1. 快捷键 KeyDescriptionPlatformF1打开命令面板(Command Palette)Win10Shift Delete剪切当前光标所在的代码行Win10 2. 文件 2.1 在文件列表中定位当前文件 操作路径:右键单击文件名 ⇒ 在右键菜单中点击 【Reveal in Explorer View】...

【Canvas与艺术】菊花孔雀螺旋
【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>菊花孔雀螺旋</title><style type"text/css">…...

circuitjs 普通开关和按钮开关
circuitjs 各类开关中最基本的有 (普通)开关 和 按钮开关(瞬时开关). 添加 在菜单 “绘制–无源元件–添加开关” 下可以添加一个普通开关.在菜单 “绘制–无源元件–添加按钮开关” 下可以添加一个按钮开关. 两者在缺省外观上没有什么区别, 如上, 左边是普通开关, 右边是按钮…...

客户端绑定本地端口与服务器建立连接的详细实现
客户端绑定本地端口与服务器建立连接的详细实现 一、网络编程基础1.1 TCP/IP协议1.2 套接字(Socket)1.3 客户端与服务器模型二、客户端程序的设计2.1 需求分析2.2 流程设计三、具体代码实现3.1 伪代码3.2 C代码实现四、代码详解4.1 初始化套接字库4.2 创建套接字4.3 绑定本地…...
C++ std::bind函数用法
看一个例子解释用法: TcpServer类的构造函数中定义: acceptor_->setNewConnectionCallback(std::bind(&TcpServer::newConnection, this,std::placeholders::_1, std::placeholders::_2));// 有一个新的客户端的连接,acceptor会执行这…...

Caffenie配合Redis做两级缓存
一、什么是两级缓存 在项目中。一级缓存用Caffeine,二级缓存用Redis,查询数据时首先查本地的Caffeine缓存,没有命中再通过网络去访问Redis缓存,还是没有命中再查数据库。具体流程如下 二、简单的二级缓存实现-v1 目录结构 2…...

MATLAB实现PID参数自动整定
目录 1、项目说明 2、文件说明 1、项目说明 本项目旨在通过 MATLAB 语言实现 PID 参数的自动整定,并设计了一个直观易用的 GUI 界面。该系统特别适用于实验室环境下的 PID 参数自整定任务。整定的核心原则在于优化系统性能,使系统的衰减比尽可能接近理…...

UE5学习笔记21-武器的射击功能
一、创建C类 创建武器子弹的类,创建生产武器子弹的类,创建弹壳的类,生产武器子弹的类的父类是武器的类 创建后如图,ProjectileMyWeapon类(产生子弹的类)继承自weapon类,Projectile(子弹的类),Casing(弹壳声…...

Mamba模型学习笔记
笔记来源:bilibili Transformer 的死穴 Transformer 结构的核心是自注意力机制层,无论是 encoder 还是 decoder,序列数据都先经过位置编码后喂给这个模块。 但是自注意力机制的计算范围仅限于窗口内,而无法直接处理窗口外的元素…...

android kotlin 基础复习 继承 inherit
1、新建文件kt 2、代码: /**用户基类**/ open class Person1(name:String){/**次级构造函数**/constructor(name:String,age:Int):this(name){//初始化println("-------基类次级构造函数---------")println("name:${name},age:${age}")} }/**子…...

读软件设计的要素06概念完整性
1. 概念完整性 1.1. 当概念组合成一个软件时,它们可以同步以便协调行为 1.1.1. 同步可能会消除一个概念的某些行为,但决不会添加与该概念的规范不一致的新行为 1.1.2. 在使用概念设计软件时,即使你没有精确定义同步,至少要说服自…...

Java 每日一刊(第2期):搭建开发环境
文章目录 JVM、JRE、JDKJVM(Java Virtual Machine,Java 虚拟机)JRE(Java Runtime Environment,Java 运行时环境)JDK(Java Development Kit,Java 开发工具包)JVM、JRE、JD…...

探索EasyCVR与AI技术深度融合:视频汇聚平台的新增长点
随着5G、AI、边缘计算、物联网(IoT)、云计算等技术的快速发展,万物互联已经从概念逐渐转变为现实,AIoT(物联网人工智能)的新时代正在加速到来。在这一背景下,视频技术作为信息传输和交互的重要手…...

IBM中国研发部调整:全球化与本土化的新平衡
如何看待IBM中国研发部裁员? 近日,IBM中国宣布撤出在华两大研发中心,引发了IT行业对于跨国公司在华研发战略的广泛讨论。这一决定不仅影响了众多IT从业者的职业发展,也让人思考全球化背景下中国IT产业的竞争力和未来发展方向。面对…...

C++入门基础篇
引言 说到编程语言常常听到的就是C语言C Java 。C语言是面向过程的,C是和Java是面向对象的,那么什么是面向对象呢?什么又是面向过程呢?C是什么?封装、继承、多态是什么?且听我絮絮叨叨。 C入门基础 1.命名…...

Qt QListWidget 代码范例,以及Qt 天坑:setStyleSheet失效问题
一、坑之所在 1.写了StyleSheet的QString并进行了设置 this->setStyleSheet(styleSheet_M);2.注释后,将StyleSheet换到UI form里去,然后又手动清理了UI form里的StyleSheet 重新使用代码设置,此时代码设置失效了 二、根本解决 1.手动从…...

Unity AnimationClip详解(1)
【动画片段】 前文我们介绍了骨骼动画,在Unity中骨骼动画的部分静态数据存储在SkinedMeshRender中,而另一部分动态的关键帧数据就是存储在AnimationClip中的。 关键帧数据来自与FBX、OBJ等动画模型文件,可以在动画导入后的Animation选项卡中…...

在这12种场景下会使Spring事务失效--注意防范
在某些业务场景下,如果一个请求中,需要同事写入多张表的数据,但为了保证操作的原子性(要么同事插入数据成功,要么同事插入失败),例如,当我们创建用户的时候,往往会给用户…...
SOPC:Nios II Processor -> Vectors
Reset Vector——复位向量 Exception Vector——执行向量 两个向量地址都存储着程序 1.Reset Vector 当FPGA进行复位时,FPGA就重新开始执行程序,这时就需要从EPCS中读取程序。由于FPGA的程序存放在EPC…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...