tensorflow-线性回归python入门
目录
读入库
构造数据
建立训练和测试数据
创建第一层到最后一层的神经网络
开始测试
sin函数回归
读入库
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import time
构造数据
X = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
Y = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
建立训练和测试数据
import sklearn.model_selection as sk
X_train, X_test, Y_train, Y_test =sk.train_test_split(X,Y,test_size=0.2, random_state = 42)
创建第一层到最后一层的神经网络
model = tf.contrib.keras.models.Sequential()
model.add(tf.contrib.keras.layers.Dense(units=1, activation=tf.nn.relu,input_dim=1))
model.summary()
# 開始搭建 model
# mse = mean square error
# sgd = stochastic gradient descent
model.compile(loss='mse',optimizer='sgd',metrics=['accuracy'])model.fit(X_test, Y_test,epochs=4000,batch_size=len(Y_test))
开始测试
print("start testing")
cost = model.evaluate(X_test, Y_test)
print("test cost: {}".format(cost))
weights, biases = model.layers[0].get_weights()
print("Weights = {}, bias = {}".format(weights,biases))
打印测试结果
# 印出測試的結果
Y_pred = model.predict(X_test)
# 畫出 data
plt.scatter(X,Y, label='X,Y')
plt.scatter(X_test, Y_test, label='X_test, Y_test')
plt.scatter(X_test, Y_pred, label='pred')
# 畫出 線
x2 = np.linspace(0,1,100)
print(biases[0])
print(weights[0])y2 =(weights[0]*x2+biases[0])
plt.plot(x2, y2, '-r', label='weights')plt.show()
sin函数回归
np.random.seed(int(time.time())) 生成随机数
num=100 随机数100个
X = np.linspace(-4,4,num) 进行线性等分
np.random.shuffle(X) 打乱
Y = 0.1*np.sin(X) 计算变量
#!/usr/bin/env python
# -*- coding=utf-8 -*-
import tensorflow as tf
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import time# 製造 data (共200筆)
np.random.seed(int(time.time()))
num=100
X = np.linspace(-4,4,num)
np.random.shuffle(X)
Y = 0.1*np.sin(X)# 建立 trainig 與 testing datax_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.1)# 建立 neural network from the first layer to last layermodel = tf.keras.models.Sequential([tf.keras.layers.Dense(units=100, activation=tf.nn.tanh, input_dim=1),tf.keras.layers.Dense(units=100, activation=tf.nn.tanh),tf.keras.layers.Dense(units=1, activation=tf.nn.tanh),
])# 除了第一層以外,定義第二層以上時,不需要定義 input dimension,因為第二層 input 就是第一層的 input# 開始搭建 model
# mse = mean square error
# sgd = stochastic gradient descent
model.compile(loss='mse',optimizer='sgd', metrics=['acc'])# training
print("start training")
for step in range(20000):cost = model.train_on_batch(x_train, y_train) #if step % 20 == 0:#print("train cost{}".format(cost))W, b = model.layers[0].get_weights()print("step{} Weights = {}, bias = {} train cost{}".format(step,W, b, cost))plt.cla()# 畫出 dataplt.scatter(X, Y)#X_test2=[-1,1]y_pred2 = model.predict(X) # Y predictplt.scatter(X, y_pred2, color='blue')plt.text(0, -0.05, 'epoch: %d ,cost=%.2f '% (step,cost[0]), fontdict={'size': 10, 'color': 'red'})plt.pause(0.01)
其他数据训练示例
#!/usr/bin/env python
# -*- coding=utf-8 -*-
import tensorflow as tf
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import time
import pandas as pd
from tensorflow.keras.datasets import boston_housing
import matplotlib.pyplot as plt
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
print(x_train.shape)
print(y_train.shape)
classes = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
data = pd.DataFrame(x_train, columns=classes)
print(data.head())
data['MEDV'] = pd.Series(data=y_train)
print(data.head())
print(data.describe()) # get some basic stats on the dataset
import seaborn as sns
from sklearn import preprocessing
scaler = preprocessing.MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
model =tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(320, activation='relu', input_shape=[x_train.shape[1]]))
model.add(tf.keras.layers.Dense(640, activation='relu'))
model.add(tf.keras.layers.Dense(640, activation='relu'))
model.add(tf.keras.layers.Dense(1))
try:
with open('model2.h5', 'r') as load_weights:
# 讀取模型權重
model.load_weights("model2.h5")
except IOError:
print("File not exists")
learning_rate = 0.0001
opt1 = tf.keras.optimizers.Nadam(lr=learning_rate)
model.compile(loss='mse', optimizer=opt1, metrics=['mae'])
history1 = []
for step in range(40000):
cost = model.train_on_batch(x_train, y_train)
if step % 20 == 0:
print("step{} train cost{}".format(step, cost))
# 保存模型架構
with open("model2.json", "w") as json_file:
json_file.write(model.to_json())
# 保存模型權重
model.save_weights("model2.h5")
# testing
print("start testing")
cost = model.evaluate(x_test, y_test)
print("test cost: {}".format(cost))
Y_pred2 = model.predict(x_test) # Y predict
print(Y_pred2[:10])
print(y_test[:10])
相关文章:
tensorflow-线性回归python入门
目录 读入库 构造数据 建立训练和测试数据 创建第一层到最后一层的神经网络 开始测试 sin函数回归 读入库 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import time 构造数据 X np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, …...
VSCode学习笔记
1. 快捷键 KeyDescriptionPlatformF1打开命令面板(Command Palette)Win10Shift Delete剪切当前光标所在的代码行Win10 2. 文件 2.1 在文件列表中定位当前文件 操作路径:右键单击文件名 ⇒ 在右键菜单中点击 【Reveal in Explorer View】...

【Canvas与艺术】菊花孔雀螺旋
【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>菊花孔雀螺旋</title><style type"text/css">…...

circuitjs 普通开关和按钮开关
circuitjs 各类开关中最基本的有 (普通)开关 和 按钮开关(瞬时开关). 添加 在菜单 “绘制–无源元件–添加开关” 下可以添加一个普通开关.在菜单 “绘制–无源元件–添加按钮开关” 下可以添加一个按钮开关. 两者在缺省外观上没有什么区别, 如上, 左边是普通开关, 右边是按钮…...

客户端绑定本地端口与服务器建立连接的详细实现
客户端绑定本地端口与服务器建立连接的详细实现 一、网络编程基础1.1 TCP/IP协议1.2 套接字(Socket)1.3 客户端与服务器模型二、客户端程序的设计2.1 需求分析2.2 流程设计三、具体代码实现3.1 伪代码3.2 C代码实现四、代码详解4.1 初始化套接字库4.2 创建套接字4.3 绑定本地…...
C++ std::bind函数用法
看一个例子解释用法: TcpServer类的构造函数中定义: acceptor_->setNewConnectionCallback(std::bind(&TcpServer::newConnection, this,std::placeholders::_1, std::placeholders::_2));// 有一个新的客户端的连接,acceptor会执行这…...

Caffenie配合Redis做两级缓存
一、什么是两级缓存 在项目中。一级缓存用Caffeine,二级缓存用Redis,查询数据时首先查本地的Caffeine缓存,没有命中再通过网络去访问Redis缓存,还是没有命中再查数据库。具体流程如下 二、简单的二级缓存实现-v1 目录结构 2…...

MATLAB实现PID参数自动整定
目录 1、项目说明 2、文件说明 1、项目说明 本项目旨在通过 MATLAB 语言实现 PID 参数的自动整定,并设计了一个直观易用的 GUI 界面。该系统特别适用于实验室环境下的 PID 参数自整定任务。整定的核心原则在于优化系统性能,使系统的衰减比尽可能接近理…...

UE5学习笔记21-武器的射击功能
一、创建C类 创建武器子弹的类,创建生产武器子弹的类,创建弹壳的类,生产武器子弹的类的父类是武器的类 创建后如图,ProjectileMyWeapon类(产生子弹的类)继承自weapon类,Projectile(子弹的类),Casing(弹壳声…...

Mamba模型学习笔记
笔记来源:bilibili Transformer 的死穴 Transformer 结构的核心是自注意力机制层,无论是 encoder 还是 decoder,序列数据都先经过位置编码后喂给这个模块。 但是自注意力机制的计算范围仅限于窗口内,而无法直接处理窗口外的元素…...

android kotlin 基础复习 继承 inherit
1、新建文件kt 2、代码: /**用户基类**/ open class Person1(name:String){/**次级构造函数**/constructor(name:String,age:Int):this(name){//初始化println("-------基类次级构造函数---------")println("name:${name},age:${age}")} }/**子…...

读软件设计的要素06概念完整性
1. 概念完整性 1.1. 当概念组合成一个软件时,它们可以同步以便协调行为 1.1.1. 同步可能会消除一个概念的某些行为,但决不会添加与该概念的规范不一致的新行为 1.1.2. 在使用概念设计软件时,即使你没有精确定义同步,至少要说服自…...

Java 每日一刊(第2期):搭建开发环境
文章目录 JVM、JRE、JDKJVM(Java Virtual Machine,Java 虚拟机)JRE(Java Runtime Environment,Java 运行时环境)JDK(Java Development Kit,Java 开发工具包)JVM、JRE、JD…...

探索EasyCVR与AI技术深度融合:视频汇聚平台的新增长点
随着5G、AI、边缘计算、物联网(IoT)、云计算等技术的快速发展,万物互联已经从概念逐渐转变为现实,AIoT(物联网人工智能)的新时代正在加速到来。在这一背景下,视频技术作为信息传输和交互的重要手…...

IBM中国研发部调整:全球化与本土化的新平衡
如何看待IBM中国研发部裁员? 近日,IBM中国宣布撤出在华两大研发中心,引发了IT行业对于跨国公司在华研发战略的广泛讨论。这一决定不仅影响了众多IT从业者的职业发展,也让人思考全球化背景下中国IT产业的竞争力和未来发展方向。面对…...

C++入门基础篇
引言 说到编程语言常常听到的就是C语言C Java 。C语言是面向过程的,C是和Java是面向对象的,那么什么是面向对象呢?什么又是面向过程呢?C是什么?封装、继承、多态是什么?且听我絮絮叨叨。 C入门基础 1.命名…...

Qt QListWidget 代码范例,以及Qt 天坑:setStyleSheet失效问题
一、坑之所在 1.写了StyleSheet的QString并进行了设置 this->setStyleSheet(styleSheet_M);2.注释后,将StyleSheet换到UI form里去,然后又手动清理了UI form里的StyleSheet 重新使用代码设置,此时代码设置失效了 二、根本解决 1.手动从…...

Unity AnimationClip详解(1)
【动画片段】 前文我们介绍了骨骼动画,在Unity中骨骼动画的部分静态数据存储在SkinedMeshRender中,而另一部分动态的关键帧数据就是存储在AnimationClip中的。 关键帧数据来自与FBX、OBJ等动画模型文件,可以在动画导入后的Animation选项卡中…...

在这12种场景下会使Spring事务失效--注意防范
在某些业务场景下,如果一个请求中,需要同事写入多张表的数据,但为了保证操作的原子性(要么同事插入数据成功,要么同事插入失败),例如,当我们创建用户的时候,往往会给用户…...
SOPC:Nios II Processor -> Vectors
Reset Vector——复位向量 Exception Vector——执行向量 两个向量地址都存储着程序 1.Reset Vector 当FPGA进行复位时,FPGA就重新开始执行程序,这时就需要从EPCS中读取程序。由于FPGA的程序存放在EPC…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...