YOLOv8安装配置教程(Windows版)
YOLOv8安装配置教程(Windows版)
简介:最近由于选择了人工智能方向的专业选修课,课程需要安装配置YOLOv8,经过查阅各种资料后才发现,许多教程都比较老旧,并且文件位置也发生了变化,所以我总结了一套最新的安装配置教程以供大家参考
我在安装配置中遇到了许多问题,也统一写到教程中,希望能帮助到你
第一步:安装Anaconda
下载连接:Anaconda
安装YOLOv8并不强制要求下载Anaconda,但使用Anaconda或Miniconda可以帮助你轻松管理Python环境和依赖,他的下载方式特别简单,这里不再过多教学。
第二步:下载YOLOv8源码
github:yolov8
gitee:yolov8
不会使用科学上网的建议使用gitee下载,文件名称一般为ultralytics-main
第三步:创建conda虚拟环境
- 在开始菜单找到Anaconda3文件夹,打开其中的Anaconda prompt
- 创建虚拟环境:
运行如下命令:conda create -n yolov8 python=3.8
中途会询问你是否安装环境所需基础包,只需输入y即可
下载完成后可输入conda env list
来查看是否创建成功
最后,我们要激活环境,输入命令conda activate yolov8
即可
前面的括号中会从(base)变为我们的(yolov8)
第四步:安装配置文件requirements.txt
- 首先需要找到这个requirements.txt配置文件的所在文件夹
我们之前下载的YOLOv8源码的文件夹叫做ultralytics-main,通常他的位置是:...\ultralytics-main\yolov8
但是如果你是并没有yolov8文件夹,可以寻找...\ultralytics-main\examples\YOLOv8-Action-Recognition
下
找到配置文件复制其路径,在Anaconda prompt中cd进入该文件夹:
先进入盘符再进入文件夹:
E:
cd dev\yolo\ultralytics-main\examples\YOLOv8-Action-Recognition
- 使用pip命令安装
pip install -r requirements.txt
如果你不会科学上网的话,建议使用国内镜像源,比如阿里或清华:
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
再如果你的网络速度较慢的情况下,可以通过增加 pip 的超时时间来解决超时问题:
pip install -r requirements.txt --timeout 120
- 安装完成配置文件后需要安装一下yolov8在python>=3.8版本必要安装包:
执行命令:pip install ultralytics
到这里,我们的YOLOv8安装配置就基本完成了
第五步:下载训练模型
训练模型推荐yolov8s.pt或者yolov8n.pt,模型体积小,下载速度也快,这里以yolov8n.pt为例:
下载链接:yolov8n.pt
下载好后需要将他与requirements.txt配置文件放在一起:
接着我们就可以使用图片进行测试,把想要测试人像识别的图片放在...\ultralytics-main\ultralytics\assets
下,其也自带了两张可供测试的图片:
然后只需要运行命令:yolo predict model=yolov8n.pt source="E:\\dev\\yolo\\ultralytics-main\\ultralytics\\assets\\111.jpg"
这里的图片名称以及路径需要替换成你的
运行完毕后就会得到运行结果:
这里告诉你识别到三个person,并且执行结果保存到如下的文件夹中:
...\ultralytics-main\examples\YOLOv8-Action-Recognition\runs\detect\predict
找到这个文件夹就可以看到识别后的图像:
这样我们就完成了最简单的YOLOv8的安装配置,并且进行了简单的测试使用
相关文章:

YOLOv8安装配置教程(Windows版)
YOLOv8安装配置教程(Windows版) 简介:最近由于选择了人工智能方向的专业选修课,课程需要安装配置YOLOv8,经过查阅各种资料后才发现,许多教程都比较老旧,并且文件位置也发生了变化,所…...

Linux的历史,版本,Linux的环境安装、简单学习4个基本的Linux指令等的介绍
文章目录 前言一、Linux的历史二、版本三、Linux的环境安装1. 腾讯云服务器的申请2. xshell的安装与使用 四、 简单学习4个基本的Linux指令1. ls2. pwd3. mkdir4. cd 总结 前言 Linux的历史,版本,Linux的环境安装、简单学习4个基本的Linux指令等的介绍 …...

【论文阅读】01-Survey on Temporal Knowledge Graph
原文名称:Survey on Temporal Knowledge Graph 1 Introduction 目前有两种方法:基于距离模型的嵌入变换方法和基于语义匹配模型的双线性模型。它们的思想都是将包含实体和关系的知识图谱嵌入到连续的低纬度实向量空间中 时间知识图的推理有两种,第一种是…...

【AIGC】InstructPixPix:基于文本引导的图像编辑技术
github:diffusers/examples/instruct_pix2pix/train_instruct_pix2pix_sdxl.py at main huggingface/diffusers GitHub 论文:https://arxiv.org/pdf/2211.09800 摘要 我们提出了一种从人类指令编辑图像的方法:给定一个输入图像和告诉模型做什么的书面…...

无人机动力系统设计之桨叶推力计算
无人机动力系统设计之桨叶推力计算 1. 源由2. 关键参数2.1 特性参数2.1.1 材质(Material)2.1.2 叶片数量(Number of Blades)2.1.3 重量(Weight)2.1.4 噪音水平(Noise Level) 2.2 安装…...

LabVIEW重构其他语言开发的旧系统
在面对一个运行已久、代码不清晰的项目时,如果该项目涉及复杂的通讯协议(如串口和488通讯),重新开发并优化成LabVIEW版本可以极大提升系统的易用性和维护性。为了确保通讯协议的顺利解析和移植,借助专业工具分析现有通…...
[晕事]今天做了件晕事43 python-byte串长度与转义字符
今天办了一件晕事,导致测试结果与预期不一致。 过程是,组装byte串的时候,整个字符串里有转义字符\x0d。 from scapy.all import IPv6, UDP pkt IPv6(src"2002:db8:a0b:12f0::157", dst"2002:db8:a0b:12f0::13")/UDP(sp…...

初识redis(String,Hash,List,Set,SortedSet)
认识NoSql sql关系型数据库 nosql非关系型数据库 nosql具有非结构化,Key/Value,Document,Draph 无关联的,非sql,BASE(原子性,持久性,一致性,隔离性) 认识r…...
Ton与ETH的一些独特的区别
文章目录 前言一、智能合约需要收取租金。二、从数据到大数据的转变三、智能合约不能运行其他合约的getter方法四、合约不是无法改变的五、Ton取消了无限制的数据结构六、钱包和地址具有独立性 前言 TON区块链是一个现代化的区块链,它为智能合约开发带来了一些全新…...

C++ | Leetcode C++题解之第396题旋转图像
题目: 题解: class Solution { public:int maxRotateFunction(vector<int>& nums) {int f 0, n nums.size();int numSum accumulate(nums.begin(), nums.end(), 0);for (int i 0; i < n; i) {f i * nums[i];}int res f;for (int i …...

前向渲染路径
1、前向渲染路径处理光照的方式 前向渲染路径中会将光源分为以下3种处理方式: 逐像素处理(需要高等质量处理的光)逐顶点处理(需要中等质量处理的光)球谐函数(SH)处理(需要低等质量…...

Python画笔案例-040 绘制五角星顶圆
1、绘制五角星顶圆 通过 python 的turtle 库绘制五角星顶圆,如下图: 2、实现代码 绘制五角星顶圆,以下为实现代码: """五角星顶圆.py """ import turtledef draw_circle(d):turtle.left(90)for _ …...

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例
伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教…...
期货量化-群体优化算法:混合蛙跳算法(SFL)
1. 概述 混合蛙跳算法(Shuffled Frog Leaping Algorithm, SFL)由 M. Eusuff 等人在2003年提出。这一算法结合了模因算法与粒子群优化算法的原理,灵感来源于一群青蛙在觅食过程中的行为模式。 SFL 最初作为一种求解组合优化问题的元启发式方法…...
tensorflow-线性回归python入门
目录 读入库 构造数据 建立训练和测试数据 创建第一层到最后一层的神经网络 开始测试 sin函数回归 读入库 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import time 构造数据 X np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, …...
VSCode学习笔记
1. 快捷键 KeyDescriptionPlatformF1打开命令面板(Command Palette)Win10Shift Delete剪切当前光标所在的代码行Win10 2. 文件 2.1 在文件列表中定位当前文件 操作路径:右键单击文件名 ⇒ 在右键菜单中点击 【Reveal in Explorer View】...

【Canvas与艺术】菊花孔雀螺旋
【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>菊花孔雀螺旋</title><style type"text/css">…...

circuitjs 普通开关和按钮开关
circuitjs 各类开关中最基本的有 (普通)开关 和 按钮开关(瞬时开关). 添加 在菜单 “绘制–无源元件–添加开关” 下可以添加一个普通开关.在菜单 “绘制–无源元件–添加按钮开关” 下可以添加一个按钮开关. 两者在缺省外观上没有什么区别, 如上, 左边是普通开关, 右边是按钮…...

客户端绑定本地端口与服务器建立连接的详细实现
客户端绑定本地端口与服务器建立连接的详细实现 一、网络编程基础1.1 TCP/IP协议1.2 套接字(Socket)1.3 客户端与服务器模型二、客户端程序的设计2.1 需求分析2.2 流程设计三、具体代码实现3.1 伪代码3.2 C代码实现四、代码详解4.1 初始化套接字库4.2 创建套接字4.3 绑定本地…...
C++ std::bind函数用法
看一个例子解释用法: TcpServer类的构造函数中定义: acceptor_->setNewConnectionCallback(std::bind(&TcpServer::newConnection, this,std::placeholders::_1, std::placeholders::_2));// 有一个新的客户端的连接,acceptor会执行这…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...