一区霜冰算法+双向深度学习模型+注意力机制!RIME-BiTCN-BiGRU-Attention
一区霜冰算法+双向深度学习模型+注意力机制!RIME-BiTCN-BiGRU-Attention
目录
- 一区霜冰算法+双向深度学习模型+注意力机制!RIME-BiTCN-BiGRU-Attention
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览






基本介绍
1.Matlab实现RIME-BiTCN-BiGRU-Attention霜冰算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.适用对象:大学生课程设计、期末大作业和毕业设计。

程序设计
- 完整程序和数据获取方式私信博主回复一区霜冰算法+双向深度学习模型+注意力机制!RIME-BiTCN-BiGRU-Attention(Matlab)。
%% 清空环境变量
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
warning off % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);vt_train{i, 1} = t_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);vt_test{i, 1} = t_test(:, i);
enddisp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')%% 初始化SSA参数
popsize = 4; % 初始种群规模
maxgen = 10; % 最大进化代数
fobj = @(x)objectiveFunction(x,f_,vp_train,vt_train,vp_test,T_test,ps_output);%% 优化算法参数设置
lb = [0.0001 10 20 0.00001]; % 参数的下限。分别是学习率,BiGRU的神经元个数,滤波器个数, 正则化参数
ub = [0.01 100 120 0.005]; % 参数的上限
dim = length(lb);%数量[Best_score,Best_pos,SSA_curve]=(popsize,maxgen,lb,ub,dim,fobj);
setdemorandstream(pi);%% 将优化目标参数传进来的值 转换为需要的超参数
learning_rate = Best_pos(1); % 学习率
NumNeurons = round(Best_pos(2)); % BiGRU神经元个数
numFilters = round(Best_pos(3)); % 滤波器个数
L2Regularization = Best_pos(4); % 正则化参数
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章:
一区霜冰算法+双向深度学习模型+注意力机制!RIME-BiTCN-BiGRU-Attention
一区霜冰算法双向深度学习模型注意力机制!RIME-BiTCN-BiGRU-Attention 目录 一区霜冰算法双向深度学习模型注意力机制!RIME-BiTCN-BiGRU-Attention效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现RIME-BiTCN-BiGRU-Attention霜冰算法…...
C语言 | Leetcode C语言题解之第396题旋转函数
题目: 题解: #define MAX(a, b) ((a) > (b) ? (a) : (b))int maxRotateFunction(int* nums, int numsSize){int f 0, numSum 0;for (int i 0; i < numsSize; i) {f i * nums[i];numSum nums[i];}int res f;for (int i numsSize - 1; i &g…...
利士策分享,克服生活中的困难:走好勇攀高峰的每一步
利士策分享,克服生活中的困难:走好勇攀高峰的每一步 在这个纷繁复杂的世界里,每个人都是自己生命旅程中的行者,而生活,则是一条既铺满鲜花又布满荆棘的道路。 我们或许会在某个清晨醒来,发现自己正站在一座…...
PurchasereturnController
目录 1、 PurchasereturnController 1.1、 反审核退货单 1.1.1、 //配件ID 1.1.2、 //配件编码 1.1.3、 //修改后仓库 1.1.4、 //修改配件信息表库存量 PurchasereturnController using QXQPS.Models; using QXQPS.Vo; using System; using System.Collection…...
mysql 学习笔记 八
总结 自动提交 查看自动提交状态:SELECT AUTOCOMMIT ; 设置自动提交状态:SET AUTOCOMMIT 0 。 手动提交 AUTOCOMMIT 0 时,使用 COMMIT 命令提交事务。 事务回滚 AUTOCOMMIT 0 时,使用 ROLLBACK 命令回滚事务。 …...
反序列化漏洞练习2
拿到题目,发现目标是获得flag.php的内容,且sis中admin和passwd等于sis2407时会输出fag的内容 根据源码编写序列化代码 <?php error_reporting(0); class sis{public $admin;public $passwd;public function __construct(){$this->admin "sis2407"…...
基于SpringBoot的社区医院管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 基于JavaSpringBootVueMySQL的社团管理系统【附源码文档】、…...
YOLOv8安装配置教程(Windows版)
YOLOv8安装配置教程(Windows版) 简介:最近由于选择了人工智能方向的专业选修课,课程需要安装配置YOLOv8,经过查阅各种资料后才发现,许多教程都比较老旧,并且文件位置也发生了变化,所…...
Linux的历史,版本,Linux的环境安装、简单学习4个基本的Linux指令等的介绍
文章目录 前言一、Linux的历史二、版本三、Linux的环境安装1. 腾讯云服务器的申请2. xshell的安装与使用 四、 简单学习4个基本的Linux指令1. ls2. pwd3. mkdir4. cd 总结 前言 Linux的历史,版本,Linux的环境安装、简单学习4个基本的Linux指令等的介绍 …...
【论文阅读】01-Survey on Temporal Knowledge Graph
原文名称:Survey on Temporal Knowledge Graph 1 Introduction 目前有两种方法:基于距离模型的嵌入变换方法和基于语义匹配模型的双线性模型。它们的思想都是将包含实体和关系的知识图谱嵌入到连续的低纬度实向量空间中 时间知识图的推理有两种,第一种是…...
【AIGC】InstructPixPix:基于文本引导的图像编辑技术
github:diffusers/examples/instruct_pix2pix/train_instruct_pix2pix_sdxl.py at main huggingface/diffusers GitHub 论文:https://arxiv.org/pdf/2211.09800 摘要 我们提出了一种从人类指令编辑图像的方法:给定一个输入图像和告诉模型做什么的书面…...
无人机动力系统设计之桨叶推力计算
无人机动力系统设计之桨叶推力计算 1. 源由2. 关键参数2.1 特性参数2.1.1 材质(Material)2.1.2 叶片数量(Number of Blades)2.1.3 重量(Weight)2.1.4 噪音水平(Noise Level) 2.2 安装…...
LabVIEW重构其他语言开发的旧系统
在面对一个运行已久、代码不清晰的项目时,如果该项目涉及复杂的通讯协议(如串口和488通讯),重新开发并优化成LabVIEW版本可以极大提升系统的易用性和维护性。为了确保通讯协议的顺利解析和移植,借助专业工具分析现有通…...
[晕事]今天做了件晕事43 python-byte串长度与转义字符
今天办了一件晕事,导致测试结果与预期不一致。 过程是,组装byte串的时候,整个字符串里有转义字符\x0d。 from scapy.all import IPv6, UDP pkt IPv6(src"2002:db8:a0b:12f0::157", dst"2002:db8:a0b:12f0::13")/UDP(sp…...
初识redis(String,Hash,List,Set,SortedSet)
认识NoSql sql关系型数据库 nosql非关系型数据库 nosql具有非结构化,Key/Value,Document,Draph 无关联的,非sql,BASE(原子性,持久性,一致性,隔离性) 认识r…...
Ton与ETH的一些独特的区别
文章目录 前言一、智能合约需要收取租金。二、从数据到大数据的转变三、智能合约不能运行其他合约的getter方法四、合约不是无法改变的五、Ton取消了无限制的数据结构六、钱包和地址具有独立性 前言 TON区块链是一个现代化的区块链,它为智能合约开发带来了一些全新…...
C++ | Leetcode C++题解之第396题旋转图像
题目: 题解: class Solution { public:int maxRotateFunction(vector<int>& nums) {int f 0, n nums.size();int numSum accumulate(nums.begin(), nums.end(), 0);for (int i 0; i < n; i) {f i * nums[i];}int res f;for (int i …...
前向渲染路径
1、前向渲染路径处理光照的方式 前向渲染路径中会将光源分为以下3种处理方式: 逐像素处理(需要高等质量处理的光)逐顶点处理(需要中等质量处理的光)球谐函数(SH)处理(需要低等质量…...
Python画笔案例-040 绘制五角星顶圆
1、绘制五角星顶圆 通过 python 的turtle 库绘制五角星顶圆,如下图: 2、实现代码 绘制五角星顶圆,以下为实现代码: """五角星顶圆.py """ import turtledef draw_circle(d):turtle.left(90)for _ …...
【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例
伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
JavaScript 标签加载
目录 JavaScript 标签加载script 标签的 async 和 defer 属性,分别代表什么,有什么区别1. 普通 script 标签2. async 属性3. defer 属性4. type"module"5. 各种加载方式的对比6. 使用建议 JavaScript 标签加载 script 标签的 async 和 defer …...
【优选算法】模拟 问题算法
一:替换所有的问号 class Solution { public:string modifyString(string s) {int n s.size();for(int i 0; i < n; i){if(s[i] ?){for(char ch a; ch < z; ch){if((i0 && ch !s[i1]) || (in-1 && ch ! s[i-1]) || ( i>0 &&…...
Server - 使用 Docker 配置 PyTorch 研发环境
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/148421901 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 建议使…...
sizeof 与strlen的区别
sizeof 和 strlen 是C和C 中用于处理数据大小和字符串长度的两个不同的操作符/函数,它们的区别如下: 概念和用途 - sizeof 是一个操作符,用于计算数据类型或变量在内存中所占的字节数,它是在编译时确定的,与数据的…...
