java实现文本相似度计算
需求
**文本推荐:**有多个文本字符串,如何设计一个简单的统计方法(从词频的角度设计),来计算出多个文本字符串两两之间的相似度,并输出大于指定相似度阈值的文本
分析理解
使用Java实现文本相似度计算的一种方法是通过构建词频向量并计算余弦相似度,具体介绍如下,简单易懂


代码实现
复杂粘贴可以直接运行
<!-- 使用HanLP进行分词 --><dependency><groupId>com.hankcs</groupId><artifactId>hanlp</artifactId><version>portable-1.8.4</version></dependency>
import com.hankcs.hanlp.tokenizer.StandardTokenizer;
import java.util.*;
import java.util.stream.Collectors;public class ChineseTextRecommender {// 使用HanLP进行中文分词// 构建词频向量// 假设我们有两个文本文档,我们想衡量它们的主题相似性。每个文档可以被表示为一个向量,其中包含词频(TF)或TF-IDF值。// 文档A: "the cat sat on the mat on the mat"// 文档B: "the cat and the dog played"// 我们选择几个关键词:"the", "cat", "sat", "on", "mat", "and", "dog", "played"。每个词在文档中出现的次数(词频)可以构成一个向量。// 向量A: [2, 1, 1, 1, 2, 0, 0, 0]("the", "cat", "sat", "on", "mat", "and", "dog", "played")// 向量B: [1, 1, 0, 0, 0, 1, 1, 1]public static Map<String, Integer> buildTermVector(String text) {List<String> words = StandardTokenizer.segment(text).stream().map(term -> term.word).collect(Collectors.toList());Map<String, Integer> termVector = new HashMap<>();for (String word : words) {termVector.put(word, termVector.getOrDefault(word, 0) + 1);}return termVector;}// 计算余弦相似度public static double cosineSimilarity(Map<String, Integer> vectorA, Map<String, Integer> vectorB) {double dotProduct = 0.0;double normA = 0.0;double normB = 0.0;for (String key : vectorA.keySet()) {dotProduct += vectorA.get(key) * (vectorB.getOrDefault(key, 0));normA += Math.pow(vectorA.get(key), 2);}for (String key : vectorB.keySet()) {normB += Math.pow(vectorB.get(key), 2);}if (normA == 0 || normB == 0) {return 0.0;}return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));}// 推荐与指定文本相似度高的文本 texts为待判断文本列表public static List<String> recommendTexts(List<String> texts, String targetText, double threshold) {Map<String, Double> similarityScores = new HashMap<>();Map<String, Integer> targetVector = buildTermVector(targetText);for (String text : texts) {Map<String, Integer> textVector = buildTermVector(text);double similarity = cosineSimilarity(targetVector, textVector);similarityScores.put(text, similarity);System.out.println(text + " ----Similarity: " + similarity);}return similarityScores.entrySet().stream().filter(entry -> entry.getValue() >= threshold).map(Map.Entry::getKey).collect(Collectors.toList());}public static void main(String[] args) {// 相似度分别为0.91 0.59 0.54 0.799 0.791List<String> texts = Arrays.asList("这是一个测试文档吗", "这是第二个文档", "这是第三个文档","这是一个文档吗","这是第一个测试文档吧哈哈");String targetText = "这是一个测试文档";double threshold = 0.8; // 理论上,阈值在0.5左右都可以接受List<String> recommendedTexts = recommendTexts(texts, targetText, threshold);System.out.println("推荐文本:");recommendedTexts.forEach(System.out::println);}
}
输出结果

相关文章:
java实现文本相似度计算
需求 **文本推荐:**有多个文本字符串,如何设计一个简单的统计方法(从词频的角度设计),来计算出多个文本字符串两两之间的相似度,并输出大于指定相似度阈值的文本 分析理解 使用Java实现文本相似度计算的…...
基于无人机边沿相关 ------- IBUS、SBUS协议和PPM信号
文章目录 一、IBUS协议二、SBUS协议三、PPM信号 一、IBUS协议 IBUS(Intelligent Bus)是一种用于电子设备之间通信的协议,采用串行通信方式,允许多设备通过单一数据线通信,较低延迟,支持多主机和从机结构&a…...
django学习入门系列之第十点《A 案例: 员工管理系统4》
文章目录 6 部门管理(原始方式)6.6 添加界面的导入(数据库)6.7 删除按键的应用6.8 编辑按键的应用6.81 传值的另一种方式 6.9 提交按键的应用 往期回顾 6 部门管理(原始方式) 6.6 添加界面的导入ÿ…...
【2024】Math-Shepherd:无需人工注释即可逐步验证和强化法学硕士。
搜索词: Math-shepherd: Verify and reinforce llms step-by-step without human annotations P Wang, L Li, Z Shao, R Xu, D Dai, Y Li, D Chen, Y Wu, Z Sui Proceedings of the 62nd Annual Meeting of the Association for …, 2024•aclanthology.org 摘要…...
[苍穹外卖]-08微信支付详解
地址簿管理 分析需求: 查询地址列表/新增地址/修改地址/删除地址/设置默认地址/查询默认地址 接口设计 新增地址接口 查询用户所有的地址接口 查询默认地址接口 根据id修改地址接口 根据id删除地址接口 根据id查询地址接口 设置默认地址接口 数据库设计: 收货地址簿(address_…...
教你五句在酒桌上和领导说的话语
1、今天很荣幸能和领导一起吃饭,我敬领导一杯希望领导工作顺利身体健康!生意兴隆!2、我敬领导一杯感谢领导平时对我的关照先干为敬!3、谢谢领导这次给我这个机会我一定会好好把握的请领导放心我一定会好好工作绝对不辜负领导对我的期望4.领导能来这里我们感到非常骄…...
景联文科技:专业图像采集服务,助力智能图像分析
景联文科技是专业数据服务公司,致力于为人工智能企业提供从数据采集、清洗到标注的全流程解决方案。协助客户解决AI开发过程中数据处理环节的关键问题,助力企业实现智能化转型。 1.多样化的图像采集服务 景联文科技提供多样化的图像采集服务,…...
QT QTcpSocket作为客户端
前言 QTcpSocket是Qt提供的关于TCP网络通信的类。QTcpSocket是一个异步的类,能够非阻塞式发送和接收数据。QTcpSocket内部封装了网络通信相关细节,对外提供便利的接口去帮助开发人员实现简历连接、断开连接、数据收发。 主要内容 基本使用方式 项目文…...
【系统架构设计师-2023年】综合知识-答案及详解
更多内容请见: 备考系统架构设计师-核心总结索引 文章目录 【第1~2题】【第3题】【第4~5题】【第6题】【第7题】【第8题】【第9题】【第10~11题】【第12题】【第13题】【第14题】【第15题】【第16题】【第17题】【第18题】【第19题】【第20题】【第21~22题】【第23题】【第24~…...
树莓派3B点灯(1)-- 四种方法
先做个简单一丢丢的吧。。。正好最近工作也要用这个。这次直接给够四种方法,给好给满。分别是Python点,用户空间配置GPIO点,设备树配置内核Leds驱动点,自己写驱动点。 用的板子是树莓派3B,GPIO 26口,蓝光L…...
Android解析XML格式数据
文章目录 Android解析XML格式数据搭建Web服务器Pull解析方式SAX解析方式 Android解析XML格式数据 通常情况下,每个需要访问网络的应用程序都会有一个自己的服务器,我们可以向服务器提交数据,也可以从服务器上获取数据。不过这个时候就出现了…...
数学建模笔记—— 灰色关联分析[GRA]
数学建模笔记—— 灰色关联分析[GRA] 灰色关联分析(GRA)1. 相关概念1.1 灰色系统1.2 什么是关联分析?1.3 灰色关联分析 2. 关联分析步骤3. 典型例题3.1 关联分析例题3.2 灰色关联综合评价 4. python代码实现4.1 关联分析4.2 灰色关联综合评价 灰色关联分析(GRA) 1.…...
ICM20948 DMP代码详解(13)
接前一篇文章:ICM20948 DMP代码详解(12) 上一回完成了对inv_icm20948_set_chip_to_body_axis_quaternion函数第2步即inv_rotation_to_quaternion函数的解析。回到inv_icm20948_set_chip_to_body_axis_quaternion中来,继续往下进行…...
【论软件需求获取方法及其应用】
摘要 2023 年 3 月,我所在的公司承接了某油企智慧加油站平台的建设工作。该项目旨在帮助加油站提升运营效率、降低运营成本和提高销售额。我在该项目中担任系统架构设计师,负责整个项目的架构设计工作。 本文以该项目为例,详细论述软件需求获…...
使用ESP8266和OLED屏幕实现一个小型电脑性能监控
前言 最近大扫除,发现自己还有几个ESP8266MCU和一个0.96寸的oled小屏幕。又想起最近一直想要买一个屏幕作为性能监控,随机开始自己diy。 硬件: ESP8266 MUColed小屏幕杜邦线可以传输数据的数据线 环境 Windows系统Qt6Arduino Arduino 库…...
Nexpose v6.6.266 for Linux Windows - 漏洞扫描
Nexpose v6.6.266 for Linux & Windows - 漏洞扫描 Rapid7 Vulnerability Management, release Aug 21, 2024 请访问原文链接:https://sysin.org/blog/nexpose-6/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.o…...
ess6新特性
1、let、const 块级作用域声明变量和常量 2、箭头函数 不能构建函数 不能new 没.prototype属性 没有this指向 this指向是根据上下文的 往上层查找 没有arguments(参数) 3、模板字符串 ${} 字符串中嵌入表达式 4、解构赋值 5、Promise 处理异步操作的标准机制 6、for of 遍历…...
C语言蓝桥杯:语言基础
竞赛常用库函数 最值查询 min_element和max_element在vector(迭代器的使用) nth_element函数的使用 例题lanqiao OJ 497成绩分析 第一种用min_element和max_element函数的写法 第二种用min和max的写法 二分查找 二分查找只能对数组操作 binary_search函数,用于查找…...
axure之变量
一、设置我们的第一个变量 1、点击axure上方设置一个全局变量a 3 2、加入按钮、文本框元件点击按钮文档框展示变量值。 交互选择【单击时】【设置文本】再点击函数。 点击插入变量和函数直接选择刚刚定义的全局变量,也可以直接手动写入函数(注意写入格式。) 这…...
vue缓存用法
Store 临时缓存 特点:需要定义,有初始值、响应式、全局使用、刷新重置 Pinia官方文档 https://pinia.vuejs.org 创建 store 缓存 示例代码 import {defineStore} from pinia import {store} from //storeexport const useMyStore defineStore({// 定义…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
