当前位置: 首页 > news >正文

时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR

时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR

文章目录

  • 一、基本原理
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR

一、基本原理

COA-GPR模型结合了小龙虾优化算法(COA)和高斯过程回归(GPR)。具体原理和流程如下:

  1. 小龙虾优化算法(COA):模仿小龙虾在自然界中的觅食行为来进行优化。它是一种启发式优化算法,模拟了小龙虾的群体搜索行为,优化算法中的个体通过不断地调整位置来找到最优解。

  2. 高斯过程回归(GPR):是一种非参数贝叶斯回归方法,通过建立高斯过程来进行预测。GPR通过定义均值函数和协方差函数来建模数据,提供预测值的均值和不确定性。

  3. 模型流程

    • 数据准备:收集并准备时间序列数据,用于训练GPR模型。
    • 优化过程:使用COA算法优化GPR模型的超参数,如协方差函数的参数。COA通过模拟小龙虾的行为来搜索超参数空间,寻找使GPR预测性能最优的参数设置。
    • 模型训练:使用优化后的参数训练GPR模型。GPR会基于训练数据建立预测模型。
    • 预测与评估:用训练好的GPR模型进行预测,并评估其在测试数据上的表现。

通过结合COA和GPR,COA-GPR能够利用小龙虾优化算法提高GPR模型的预测精度和稳定性。

二、实验结果

COA-GPR实验结果
在这里插入图片描述
GPR实验结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx'); % 四个类别分别用0 1 2 3表示
rand('state',0);%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例 
outdim = 1;                                  % 最后一列为输出
num_class = length(unique(res(:,end)));      % 计算类别数 
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);%%  矩阵转置
p_train = P_train'; p_test = P_test';
t_train = T_train'; t_test = T_test';

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

相关文章:

时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR

时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR 文章目录 一、基本原理二、实验结果三、核心代码四、代码获取五、总结 时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR 一、…...

C#进阶-快速了解IOC控制反转及相关框架的使用

目录 一、了解IOC 1、概念 2、生命周期 二、IOC服务示例 1、定义服务接口 2、实现服务 三、扩展-CommunityToolkit.Mvvm工具包 Messenger信使 方式一(收发消息) 方式二(收发消息) 方式三(请求消息&#xf…...

C++内存布局

文章目录 C内存布局1.文字介绍2.图片介绍3.代码介绍 C内存布局 1.文字介绍 1.内核态空间 2.用户态空间 (1)栈区:存储局部变量和函数调用的相关信息,栈的特点是自动分配和释放,由操作系统管理。栈由高地址向低地址生长,通常为0x…...

【Linux 19】线程概念

文章目录 🌈 一、线程的概念⭐ 1. 线程是什么⭐ 2. 线程的优点⭐ 3. 线程的缺点⭐ 4. 线程的异常⭐ 5. 线程的用途 🌈 二、进程和线程⭐ 1. 进程和线程的区别⭐ 2. 进程的多线程共享⭐ 3. 进程和线程的关系⭐ 3. 进程和线程的关系 🌈 一、线程…...

[区间dp]添加括号

题目描述 有一个 n n n 个元素的数组 a a a。不改变序列中每个元素在序列中的位置,把它们相加,并用括号记每次加法所得的和,称为中间和。现在要添上 n − 1 n - 1 n−1 对括号,加法运算依括号顺序进行,得到 n − …...

jenkins流水线+k8s部署springcloud微服务架构项目

文章目录 1.k8s安装2.jenkins安装3.k8s重要知识1.简介2.核心概念3.重要命令1.查看集群消息2.命名空间3.资源创建/更新4.资源查看5.描述某个资源的详细信息6.资源编辑7.资源删除8.资源重启9.查看资源日志10.资源标签 4.k8s控制台1.登录2.界面基本操作1.选择命名空间2.查看命名空…...

安卓开发板_联发科MTK开发评估套件串口调试

串口调试 如果正在进行lk(little kernel ) 或内核开发,USB 串口适配器( USB 转串口 TTL 适配器的简称)对于检查系统启动日志非常有用,特别是在没有图形桌面显示的情况下。 1.选购适配器 常用的许多 USB 转串口的适配器&#xf…...

vue+el-table 可输入表格使用上下键进行input框切换

使用上下键进行完工数量这一列的切换 <el-table :data"form.detailList" selection-change"handleChildSelection" ref"bChangeOrderChild" max-height"500"><!-- <el-table-column type"selection" width&quo…...

中国书法——孙溟㠭浅析碑帖《三希堂法帖》

孙溟㠭浅析碑帖《三希堂法帖》 全称是《三希堂石渠宝笈法帖》&#xff0c;是中国清代宫廷刻帖&#xff0c;一共三十二册。 清朝高宗弘历收藏了晋王羲之《快雪时晴帖》&#xff0c;王献之的《中秋帖》&#xff0c;王珣的《伯远帖》三种王氏原墨迹。故而把所藏法书之所…...

深入探讨生成对抗网络(GANs):颠覆传统的AI创作方式

在人工智能的快速发展中&#xff0c;生成对抗网络&#xff08;Generative Adversarial Networks, GANs&#xff09;无疑是一个引人注目的技术。自2014年由Ian Goodfellow等人首次提出以来&#xff0c;GANs已经在图像生成、文本生成、视频生成等多个领域展现出了惊人的能力。本文…...

vmware Vnet8虚拟网卡丢失的找回问题

vmware Vnet8虚拟网卡丢失的找回问题 1.打开VMware Workstation 2.然后点击Edit --> Virtual Network Edit --> 打开Virtual Network Edit框 &#xff0c; 3.点击最下面的的Restore Default 按钮&#xff0c; 3.恢复默认设置&#xff0c;这会在网络连接那块可以看到丢失…...

Python 从入门到实战13(字符串简介)

我们的目标是&#xff1a;通过这一套资料学习下来&#xff0c;通过熟练掌握python基础&#xff0c;然后结合经典实例、实践相结合&#xff0c;使我们完全掌握python&#xff0c;并做到独立完成项目开发的能力。 上篇文章我们通过举例学习了流程控制语句中的循环语句。今天继续讨…...

Redis_RDB持久化

基于RDB的持久化方式会把当前内存中所有的redis键值对数据以快照的方式写入硬盘文件中&#xff0c;如果需要恢复数据&#xff0c;就把快照文件读到内存中。 RDB快照文件是经压缩的二进制格式的文件&#xff0c;它的储存路径不仅可以在redis服务器启动前通过配置参数来设置&…...

SOP流程制定:vioovi ECRS工时分析软件的智慧引领

在现代制造业中&#xff0c;标准化操作流程&#xff08;SOP&#xff09;已成为提升生产效率、确保产品质量、降低运营成本的关键要素。SOP不仅为生产活动提供了明确的指导&#xff0c;还促进了企业管理的规范化和精细化。然而&#xff0c;如何科学、高效地制定SOP流程&#xff…...

并发编程-synchronized解决原子性问题

并发编程-synchronized解决原子性问题 文章目录 并发编程-synchronized解决原子性问题零、说在前面一、线程安全问题1.1 什么是线程安全问题1.2 自增运算不是线程安全的1.3 临界区资源与临界区代码段 二、synchronized 关键字的使用2.1 synchronized 关键字作用2.2 synchronize…...

CSS之我不会

非常推荐html-css学习视频&#xff1a;尚硅谷html-css 一、选择器 作用&#xff1a;选择页面上的某一个后者某一类元素 基本选择器 1.标签选择器 格式&#xff1a;标签{} <h1>666</h1><style>h1{css语法} </style>2.类选择器 格式&#xff1a;.类…...

AI绘画:SD打光神器!(Stable Diffusion进阶篇:Imposing Consistent Light)

前言 在上一篇笔记中学习了如何简单地下载以及使用IC-Light&#xff0c;今天的内容会稍微有点不一样。 对于学过stable diffusion的小伙伴来说&#xff0c;forge UI和Comfy UI会更加熟悉一些。在IC-Light发布后&#xff0c;Openpose editor的开发者将其制作成了一个Forge UI上…...

QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第二期]

QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第二期] 第二期介绍&#xff1a;频道模块之频道管理 目录 QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第二期]第二期介绍&#xff1a;频道模块之频道管理获取用户详情获取用户频道列表获取频道详情获取子频道列表获…...

参赛心得和思路分享:2021第二届云原生编程挑战赛2: 实现一个柔性集群调度机制

关联比赛: 2021第二届云原生编程挑战赛2&#xff1a;实现一个柔性集群调度机制 参赛心得 历时快两个月的第二届云原生编程挑战赛结束了&#xff0c;作为第一次参赛的萌新&#xff0c;拿下了28名的成绩&#xff0c;与第一名差了19万分&#xff0c;因为赛制时间太长&#xff0c…...

具体函数的卡诺图填入

目录 用卡诺图表示逻辑函数 基本步骤 例子1 例子2 例子3 用卡诺图表示逻辑函数 基本步骤 例子1 由真值表得卡诺图。 在函数值为1的地方在卡诺图上画上1。 例子2 例子3 非标准与或式&#xff0c;要找到公共部分。 将AB所在的那一行填上1。 将A非D的那个部分也填上1。 再…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...