当前位置: 首页 > news >正文

果蔬识别系统性能优化之路(三)

目录

    • 前情提要
      • 遗留问题
    • 解决方案
      • 优化查询速度
      • 优化ivf初始化的速度
    • 下一步

前情提要

果蔬识别系统性能优化之路(二)

遗留问题

  1. 优化同步速度,目前大约30秒,不是一个生产速度
    这次来解决遗留问题

通过console,发现两个地方特别耗时,一个是查询数据,另一个是初始化ivf

 /*** 同步redis* @param storeCode*/async syncRedis(storeCode: string) {let s = Date.now();const featureDatabase = await this.findAll(storeCode);let e = Date.now();console.log(`查询耗时1:${e - s}ms`);const ids = featureDatabase.map(({ id }) => id);await this.redisService.set(`${storeCode}-featureDatabase`, JSON.stringify(ids));s = Date.now();const url = 'http://localhost:5000/sync'; // Python 服务的 URLawait firstValueFrom(this.httpService.post(url, { data: featureDatabase, storeCode }));e = Date.now();console.log(`查询耗时3:${e - s}ms`);}

在这里插入图片描述

解决方案

优化查询速度

之前使用的是FIND_IN_SET方法对类似1,2,3这样的数据进行包含条件的查询,速度太慢了,优化后:

/*** 查询所有* @param storeCode*/async findAll(storeCode: string) {return await this.featureRepository.createQueryBuilder('feature').select(['feature.id', 'feature.features']).where('feature.storeCode REGEXP :storeCode', { storeCode: `(^|,)${storeCode}(,|$)` }).getMany();}

效果提升了一倍:
在这里插入图片描述

优化ivf初始化的速度

当前的初始化方法

 def __init__(self, features, nlist=100, m=16, n_bits=8):d = features.shape[1]# 创建量化器quantizer = faiss.IndexFlatL2(d)  # 使用L2距离进行量化self.index = faiss.IndexIVFPQ(quantizer, d, nlist, m, n_bits)# 训练索引self.index.train(features)self.index.add(features)  # 将特征向量添加到索引中

优化方法:

  1. 增加并行化处理
# 设置线程数,例如使用所有可用的CPU核心
faiss.omp_set_num_threads(num_threads)  # num_threads 是你希望使用的线程数量
  1. 减少索引的复杂度
    减少nlist和m的值,但这样会损失精度,先不采用
  2. 使用增量添加数据
    分批处理可以分散压力,同时利用数据流式处理的优势。
batch_size = 1000  # 每次处理1000个特征
for i in range(0, len(features), batch_size):self.index.add(features[i:i+batch_size])
  1. 更换其他索引类型
self.index = faiss.IndexIVFFlat(quantizer, d, nlist)

下一步

  1. 新建store_feature表,关联storeCode和featureId表,对数据库进行规范化,创建一个新的表来映射storeCode与feature的关系,从而可以使用简单的WHERE条件来充分利用索引
  2. 实现对特征向量ivf的增删改查

相关文章:

果蔬识别系统性能优化之路(三)

目录 前情提要遗留问题 解决方案优化查询速度优化ivf初始化的速度 下一步 前情提要 果蔬识别系统性能优化之路(二) 遗留问题 优化同步速度,目前大约30秒,不是一个生产速度 这次来解决遗留问题 通过console,发现两个…...

时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR

时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR 文章目录 一、基本原理二、实验结果三、核心代码四、代码获取五、总结 时序预测|基于小龙虾优化高斯过程GPR数据回归预测Matlab程序COA-GPR 多特征输入单输出 附赠基础GPR 一、…...

C#进阶-快速了解IOC控制反转及相关框架的使用

目录 一、了解IOC 1、概念 2、生命周期 二、IOC服务示例 1、定义服务接口 2、实现服务 三、扩展-CommunityToolkit.Mvvm工具包 Messenger信使 方式一(收发消息) 方式二(收发消息) 方式三(请求消息&#xf…...

C++内存布局

文章目录 C内存布局1.文字介绍2.图片介绍3.代码介绍 C内存布局 1.文字介绍 1.内核态空间 2.用户态空间 (1)栈区:存储局部变量和函数调用的相关信息,栈的特点是自动分配和释放,由操作系统管理。栈由高地址向低地址生长,通常为0x…...

【Linux 19】线程概念

文章目录 🌈 一、线程的概念⭐ 1. 线程是什么⭐ 2. 线程的优点⭐ 3. 线程的缺点⭐ 4. 线程的异常⭐ 5. 线程的用途 🌈 二、进程和线程⭐ 1. 进程和线程的区别⭐ 2. 进程的多线程共享⭐ 3. 进程和线程的关系⭐ 3. 进程和线程的关系 🌈 一、线程…...

[区间dp]添加括号

题目描述 有一个 n n n 个元素的数组 a a a。不改变序列中每个元素在序列中的位置,把它们相加,并用括号记每次加法所得的和,称为中间和。现在要添上 n − 1 n - 1 n−1 对括号,加法运算依括号顺序进行,得到 n − …...

jenkins流水线+k8s部署springcloud微服务架构项目

文章目录 1.k8s安装2.jenkins安装3.k8s重要知识1.简介2.核心概念3.重要命令1.查看集群消息2.命名空间3.资源创建/更新4.资源查看5.描述某个资源的详细信息6.资源编辑7.资源删除8.资源重启9.查看资源日志10.资源标签 4.k8s控制台1.登录2.界面基本操作1.选择命名空间2.查看命名空…...

安卓开发板_联发科MTK开发评估套件串口调试

串口调试 如果正在进行lk(little kernel ) 或内核开发,USB 串口适配器( USB 转串口 TTL 适配器的简称)对于检查系统启动日志非常有用,特别是在没有图形桌面显示的情况下。 1.选购适配器 常用的许多 USB 转串口的适配器&#xf…...

vue+el-table 可输入表格使用上下键进行input框切换

使用上下键进行完工数量这一列的切换 <el-table :data"form.detailList" selection-change"handleChildSelection" ref"bChangeOrderChild" max-height"500"><!-- <el-table-column type"selection" width&quo…...

中国书法——孙溟㠭浅析碑帖《三希堂法帖》

孙溟㠭浅析碑帖《三希堂法帖》 全称是《三希堂石渠宝笈法帖》&#xff0c;是中国清代宫廷刻帖&#xff0c;一共三十二册。 清朝高宗弘历收藏了晋王羲之《快雪时晴帖》&#xff0c;王献之的《中秋帖》&#xff0c;王珣的《伯远帖》三种王氏原墨迹。故而把所藏法书之所…...

深入探讨生成对抗网络(GANs):颠覆传统的AI创作方式

在人工智能的快速发展中&#xff0c;生成对抗网络&#xff08;Generative Adversarial Networks, GANs&#xff09;无疑是一个引人注目的技术。自2014年由Ian Goodfellow等人首次提出以来&#xff0c;GANs已经在图像生成、文本生成、视频生成等多个领域展现出了惊人的能力。本文…...

vmware Vnet8虚拟网卡丢失的找回问题

vmware Vnet8虚拟网卡丢失的找回问题 1.打开VMware Workstation 2.然后点击Edit --> Virtual Network Edit --> 打开Virtual Network Edit框 &#xff0c; 3.点击最下面的的Restore Default 按钮&#xff0c; 3.恢复默认设置&#xff0c;这会在网络连接那块可以看到丢失…...

Python 从入门到实战13(字符串简介)

我们的目标是&#xff1a;通过这一套资料学习下来&#xff0c;通过熟练掌握python基础&#xff0c;然后结合经典实例、实践相结合&#xff0c;使我们完全掌握python&#xff0c;并做到独立完成项目开发的能力。 上篇文章我们通过举例学习了流程控制语句中的循环语句。今天继续讨…...

Redis_RDB持久化

基于RDB的持久化方式会把当前内存中所有的redis键值对数据以快照的方式写入硬盘文件中&#xff0c;如果需要恢复数据&#xff0c;就把快照文件读到内存中。 RDB快照文件是经压缩的二进制格式的文件&#xff0c;它的储存路径不仅可以在redis服务器启动前通过配置参数来设置&…...

SOP流程制定:vioovi ECRS工时分析软件的智慧引领

在现代制造业中&#xff0c;标准化操作流程&#xff08;SOP&#xff09;已成为提升生产效率、确保产品质量、降低运营成本的关键要素。SOP不仅为生产活动提供了明确的指导&#xff0c;还促进了企业管理的规范化和精细化。然而&#xff0c;如何科学、高效地制定SOP流程&#xff…...

并发编程-synchronized解决原子性问题

并发编程-synchronized解决原子性问题 文章目录 并发编程-synchronized解决原子性问题零、说在前面一、线程安全问题1.1 什么是线程安全问题1.2 自增运算不是线程安全的1.3 临界区资源与临界区代码段 二、synchronized 关键字的使用2.1 synchronized 关键字作用2.2 synchronize…...

CSS之我不会

非常推荐html-css学习视频&#xff1a;尚硅谷html-css 一、选择器 作用&#xff1a;选择页面上的某一个后者某一类元素 基本选择器 1.标签选择器 格式&#xff1a;标签{} <h1>666</h1><style>h1{css语法} </style>2.类选择器 格式&#xff1a;.类…...

AI绘画:SD打光神器!(Stable Diffusion进阶篇:Imposing Consistent Light)

前言 在上一篇笔记中学习了如何简单地下载以及使用IC-Light&#xff0c;今天的内容会稍微有点不一样。 对于学过stable diffusion的小伙伴来说&#xff0c;forge UI和Comfy UI会更加熟悉一些。在IC-Light发布后&#xff0c;Openpose editor的开发者将其制作成了一个Forge UI上…...

QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第二期]

QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第二期] 第二期介绍&#xff1a;频道模块之频道管理 目录 QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第二期]第二期介绍&#xff1a;频道模块之频道管理获取用户详情获取用户频道列表获取频道详情获取子频道列表获…...

参赛心得和思路分享:2021第二届云原生编程挑战赛2: 实现一个柔性集群调度机制

关联比赛: 2021第二届云原生编程挑战赛2&#xff1a;实现一个柔性集群调度机制 参赛心得 历时快两个月的第二届云原生编程挑战赛结束了&#xff0c;作为第一次参赛的萌新&#xff0c;拿下了28名的成绩&#xff0c;与第一名差了19万分&#xff0c;因为赛制时间太长&#xff0c…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...