当前位置: 首页 > news >正文

9.测试计划(包含笔试/面试题)

一、软件测试计划介绍

1.测试计划就是一份测试文档,一份描述测试工作计划的文档,对测试计划进行统筹安排。

2.测试计划的编写者就是测试组长,测试主管。

3.测试计划的查阅者:测试人员,测试主管,产品,开发,销售人员

3.企业测试计划文档到底什么样?

        测试周期为两周
                测试计划  1天

                需求分析 2天

                用例设计 3天

                测试执行  执行前准备和冒烟测试一起0.5天,第一轮测试2.5天,第二轮测试1.5天

                测试报告 一天:用于评估软件质量的测试文档
4.测试报告的编写者:测试组长,测试主管

        由指定某个测试人员来写,需要从其他测试人员收集测试数据

        项目只有一份测试报告

        测试报告包括:
                测试范围

                测试环境

                数据统计(bug数据,bug状态,bug类型统计,测试阶段统计,按功能模块统计)

                测试总结(测试用例数,用例执行率,用例成功率,缺陷关闭率,遗留bug情况(一二级修复情况,遗留bug等级,及情况说明),结论是ST测试通过/不通过)

二、常见面试题

1.测试计划包含哪些内容?

        5W1H

        why:测试目的

        what:测试内容

        when:测试进度安排

        where:测试环境

        who:测试人员

        How:怎么来做(测试方法+测试工具)

        测试风险评估:
                一般存在风险
                1>需求变更/需求做增加:测试时间拉长,人员调配,协调,做计划的时候,时间安排做一些预留
                2>测试人员变动:人员调配,协调或者加班

2.再测试阶段如何保证测试用例的覆盖率?
        首先就是我们先做测试需求分析,分析之后我们会有评审,去避免错测和漏测,其次就是再做用例设计的时候,会结合不同的方法,比如等价类,边界值,场景法,错误推断法等,然后尽可能的去模拟用户所有的测试数据及测试场景,然后去把测试点全部进行覆盖,去保障我们的用例覆盖率,并且我们写完测试用例的时候,也会进行评审,避免错测和漏测。
 

3.测试工作量大概占项目的时间比例是多少?
        大概占30%-40%

        项目时间+开发时间+测试时间

        项目一个月,开发3周,测试2周

相关文章:

9.测试计划(包含笔试/面试题)

一、软件测试计划介绍 1.测试计划就是一份测试文档,一份描述测试工作计划的文档,对测试计划进行统筹安排。 2.测试计划的编写者就是测试组长,测试主管。 3.测试计划的查阅者:测试人员,测试主管,产品&#x…...

这 7 款AI应用将让你全新的iPhone 16成为电影制作的强大工具

苹果公司在周一的Glowtime发布会上揭晓了新款的iPhone 16 Pro系列。除了新加入的苹果智能功能和令人印象深刻的硬件升级外,它还获得了一套视频制作工具,让用户能够在一个几乎可以放进口袋的设备上制作整部电影。 这些升级中有一个48MP融合相机。它具有2…...

自注意力机制(self-attention)

自注意力机制(self-attention) 之前听过吴恩达老师的课,吴恩达老师CNN那一块讲的特别好,但是后面RNN这一部分我听的不是很明白,今天有看了李宏毅老师attention这部分的课,总结一下笔记。 self-attention …...

Nuxt3入门:过渡效果(第5节)

你好同学&#xff0c;我是沐爸&#xff0c;欢迎点赞、收藏、评论和关注。 Nuxt 利用 Vue 的 <Transition> 组件在页面和布局之间应用过渡效果。 一、页面过渡效果 你可以启用页面过渡效果&#xff0c;以便对所有页面应用自动过渡效果。 nuxt.config.js export defaul…...

【开发工具】IntelliJ IDEA插件推荐:Json Helper——让JSON处理更高效

导语&#xff1a;在Java开发过程中&#xff0c;JSON作为一种轻量级的数据交换格式&#xff0c;被广泛应用于前后端数据交互。今天&#xff0c;我要为大家介绍一款IntelliJ IDEA插件——Json Helper&#xff0c;帮助开发者更高效地处理JSON数据。 一、什么是Json Helper&#x…...

Lua垃圾回收机制

Lua垃圾回收机制 在 Lua 中&#xff0c;一共只有8种数据类型&#xff0c;分别为 nil 、boolean 、userdata 、number 、string 、 table 、 function 、 userdata 和 thread 。其中&#xff0c;只有 string table function thread 四种是以引用方式共享&#xff0c;是需要被 G…...

Java学习路线:详细指引

Java学习路线可以分为几个阶段&#xff0c;每个阶段都有其重点和推荐学习的内容。下面我将按照初学者、进阶和高级三个阶段来举例说明&#xff1a; 初学者阶段 目标&#xff1a; 熟悉Java基础语法理解面向对象编程掌握基本数据类型和数据结构学会使用IDE&#xff08;如Intel…...

商家转账到零钱如何开通-微信支付

商家转账到零钱是微信支付的一项实用功能&#xff0c;允许商户将资金从商户号余额直接转账到用户的微信零钱。我们以上万次成功申请的经验整理了本文的详细的步骤和建议以帮助商户可以快速开通该功能。 1. 准备工作 - 确认申请资格&#xff1a;只有公司性质的商户可以申请此功能…...

自研商家如何快速接入电商平台订单数据?

随着电子商务行业的快速发展&#xff0c;越来越多的商家开始寻求高效的订单管理和数据整合方案。对于那些自研系统的商家来说&#xff0c;如何实现与各大电商平台之间的无缝对接&#xff0c;成为了一项重要挑战。点三电商API正是为此类需求量身打造&#xff0c;为商家提供了一站…...

Win10下借助CMake编译OpenMVS

笔者在编译OpenMVS的过程十分曲折。刚开始借助CMake编译,能够把与库生成相关的工程编译出来,但是与可执行文件相关的工程会报错;后来参考官方教程借助VCPKG编译,发现VCPKG并没有想中强大、好用,最终也是遇到了各种问题没有编译成功。但是,笔者在解决问题的过程发现了问题…...

04_定时器与数码管基础

通过上节课的实验&#xff0c;大家会发现&#xff0c;我们逐渐进入比较实质性的学习了&#xff0c;需要记住的内容也更多了&#xff0c;个别地方可能会感觉吃力。但是大家不要担心&#xff0c;要有信心。这个跟小孩学走路一样&#xff0c;刚开始走得不太稳&#xff0c;没关系&a…...

Python 数学建模——方差分析

文章目录 前言单因素方差分析原理核心代码 双因素方差分析数学模型分析依据典型代码 前言 方差分析也是概率论中非常重要的内容&#xff0c;有时数学建模需要用到。方差分析是干什么的&#xff1f;如果说假设检验用于分析两个总体之间的均值 μ 1 , μ 2 \mu_1,\mu_2 μ1​,μ…...

计算机视觉中,什么是上下文信息(contextual information)?

在计算机视觉中&#xff0c;上下文信息&#xff08;contextual information&#xff09;是指一个像素或一个小区域周围的环境或背景信息&#xff0c;它帮助模型理解图像中对象的相对位置、大小、形状&#xff0c;以及与其他对象的关系。上下文信息在图像中提供了全局的语义和结…...

YOLOv5改进 | 模块缝合 | C3 融合RVB + EMA注意力机制【二次融合】

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 &#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 专栏目录 &#xff1a;《YOLOv5入门 改…...

mysql 更改默认端口号 新增用户密码 赋予权限

默认情况下&#xff0c;mysql的端口是3306&#xff0c;超级用户是root&#xff0c;很多情况下会被黑客扫描到&#xff0c;成为肉鸡&#xff08;作者以前就有过经理&#xff09;&#xff0c;数据库表直接丢失&#xff0c;勒索我。 所以我这里介绍下&#xff0c;更改默认端口&am…...

吐血整理nacos 作为springcloud的配置中心和注册中心

吐血整理nacos 作为配置中心和注册中心 环境版本nacos 版本 nacos启动单机模式启动配置数据库 Spring cloud 连接注册Nacos配置中心导入依赖 注册中心 环境版本 SpringBoot版本SpringCloud版本cloud Alibaba版本2.6.132021.0.52021.0.5.0 参照依据 spring-cloud-alibab 对应…...

【秋招笔试】9.09阿里国际秋招(已改编)-三语言题解

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收集…...

sql语句在sqlserver中能查询出结果,但是代码中查不出来

右键登录名&#xff0c;选择属性&#xff0c;勾选下面两张图片中的项&#xff0c;即可。...

【机器学习】决策树与随机森林:模型对比与应用案例分析

文章目录 一.引言 在现代数据科学的世界中&#xff0c;决策树和随机森林是两个非常重要且广泛使用的机器学习算法。它们不仅因其高效性和强大的表现力而受到青睐&#xff0c;而且在解决实际问题时也表现出了令人印象深刻的能力。本篇文章将深入探讨这两个算法&#xff0c;帮助读…...

Apache SeaTunnel基础介绍

一、什么是Apache SeaTunnel&#xff1f; Apache SeaTunnel&#xff08;最初名为Waterdrop&#xff09;是一个开源的分布式数据集成平台&#xff0c;专为大规模数据处理设计。SeaTunnel可以从多种数据源读取数据&#xff0c;进行实时流式处理或批处理&#xff0c;然后将处理后…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...