当前位置: 首页 > news >正文

9.5. 机器翻译与数据集

笔记

9.5. 机器翻译与数据集 — 动手学深度学习 2.0.0 documentation

1.下载文件 读文件

2.处理数据 在所有标点符号前面加空格 后面用于分割  因为法语英语可能有半角全角的字符区分用utf编码的方式统一成半角字符的空格

3.因为分隔用的是空格split 所有vocab是没有空格的

4.分割之后 分别是词源和翻译两个list

分别都是一个大list装着不同的小list,小list对应的是原本的词语加字符,用空格split之后分开装了

5.后续用vocab处理,  提前加入reserved_tokens=['<pad>', '<bos>', '<eos>'] 这三个 pad是后续padding用的就是填充的缩写,填充标识符,bos是开始标识符,eos是结束标识符  因为固定'unknown'排第一,下标0,所有这三个正好是下标1,2,3的位置 

min_freq=2出现次数少于2次的生僻词过滤,处理后得到词源和翻译字典 每一个下标对应一个word而不是字符

#此处用字典是为了之后将word和字符转成字典中按频率排的数字list,减少内存和方便操作

6.之后将词源内容src每一句转成数字list,但同时还要加上eos标识符标志结束,因为没有其他办法标志句子的结束,

标识符在vocab下标是3 

7.之后将所有lines中的文本每一行line填充为num_steps长度,当num_steps为8的时候

以str的角度来看go.这个文本转换成vocab的数字序列之后只有2的长度,加上eos标志符也只有3.所以需要填充为go.<eos><pad><pad><pad><pad><pad>  这样的话就是长度为8了

以数字序列来看就是[9, 4, 3, 1, 1, 1, 1, 1] 9是go,.是4, eos是3 注意是在eos后面加

 因为要方便后面算valid有效长度

8.算有效长度:

valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)

用下标0组实例分解

(array != vocab['<pad>']).type(torch.int32)  布尔转int

 最后以全组再用sum在1维处减少维数

 得到有效长度list

9.最后就是构成传数据的函数load_data_nmt返回数据 返回四个成员组成的tuple  

 
import os
import torch
from d2l import torch as d2l#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')#@save
def read_data_nmt():"""载入“英语-法语”数据集"""data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r',encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])#@save
def preprocess_nmt(text):"""预处理“英语-法语”数据集"""def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' '# 使用空格替换不间断空格# 使用小写字母替换大写字母text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()# 在单词和标点符号之间插入空格out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return ''.join(out)text = preprocess_nmt(raw_text)
print(text[:80])#@save
def tokenize_nmt(text, num_examples=None):"""词元化“英语-法语”数据数据集"""source, target = [], []for i, line in enumerate(text.split('\n')):if num_examples and i > num_examples:breakparts = line.split('\t')if len(parts) == 2:source.append(parts[0].split(' '))target.append(parts[1].split(' '))return source, targetsource, target = tokenize_nmt(text)
source[:6], target[:6]#@save
def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):"""绘制列表长度对的直方图"""d2l.set_figsize()_, _, patches = d2l.plt.hist([[len(l) for l in xlist], [len(l) for l in ylist]])d2l.plt.xlabel(xlabel)d2l.plt.ylabel(ylabel)for patch in patches[1].patches:patch.set_hatch('/')d2l.plt.legend(legend)show_list_len_pair_hist(['source', 'target'], '# tokens per sequence','count', source, target);src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])#空格只做分割 vocab是没有空格的 src_vocab[' ']
len(src_vocab)#@save
def truncate_pad(line, num_steps, padding_token):#padding_token指用哪个token用于填充padding 传进去的是vocab的下标"""截断或填充文本序列 truncate翻译是截断"""if len(line) > num_steps:return line[:num_steps]  # 截断return line + [padding_token] * (num_steps - len(line))  # 填充#line是[47, 4]  这里意思是往里面一直加元素这样一个[1]truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])#@save
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab['<eos>']] for l in lines]#数字list加上一个eos标识符的下标 所以加了一个结束的标志下标  比如[9,4]->[9,4,3]array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)return array, valid_len#@save
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>', '<bos>', '<eos>'])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = d2l.load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocabtrain_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:print('X:', X.type(torch.int32))print('X的有效长度:', X_valid_len)print('Y:', Y.type(torch.int32))print('Y的有效长度:', Y_valid_len)break

相关文章:

9.5. 机器翻译与数据集

笔记 9.5. 机器翻译与数据集 — 动手学深度学习 2.0.0 documentation 1.下载文件 读文件 2.处理数据 在所有标点符号前面加空格 后面用于分割 因为法语英语可能有半角全角的字符区分用utf编码的方式统一成半角字符的空格 3.因为分隔用的是空格split 所有vocab是没有空格的 …...

跟着凯新生物2 Arm PEG Biotin,2-Branched PEG Biotin,生物素-聚乙二醇-二臂/支,学试剂知识

中英文名&#xff1a;2 Arm/Branched PEG Biotin&#xff0c;2 ArmPEG Biotin&#xff0c;二臂/支 PEG 生物素一、Product specifications&#xff1a; 1.CAS No&#xff1a;N/A 2.Packaging specification&#xff1a;10mg&#xff0c;25mg&#xff0c;50mg, flexible packagi…...

react组件进阶(四)

文章目录1. 组件通讯介绍2. 组件的 props3. 组件通讯的三种方式3.1 父组件传递数据给子组件3.2 子组件传递数据给父组件3.3 兄弟组件4. Context5. props 深入5.1 children 属性5.2 props 校验5.3 props 的默认值6. 组件的生命周期6.1 组件的生命周期概述6.2 生命周期的三个阶段…...

阿维塔城区NCA智驾导航辅助,复杂路口,全面胜任

阿维塔11城区NCA智驾导航辅助将于3月在上海、深圳等城市分阶段开启体验&#xff0c;以看得清、判得准、控得稳的“智驾”&#xff0c;进一步巩固业界智能天花板的地位。智能驾驶里程碑&#xff0c;拨杆两下开启都市安适旅程作为AVATRANS智能领航系统的重要组成部分&#xff0c;…...

[Pandas] div()函数

div()方法将DataFrame中的每个值除以指定的值&#xff0c;并返回一个计算处理后的Dataframe结果 DataFrame.div()函数其实是除法运算&#xff0c;表格中的每个数据都是被除数 导入数据 import pandas as pd df pd.DataFrame({"col1":[5, 3, None, 4], "col2…...

c++并发与多线程

c并发与多线程 子线程结束&#xff0c;主线程不能结束&#xff0c;否则会出错&#xff0c;和java不一样。 可以用join的方式让主线程等待子线程执行结束。 quickStart 线程相关头文件 #include <thread> 使用全局函数构造一个线程对象 #include <iostream> #…...

Vinylsulfone PEG Biotin,Biotin-PEG-VS,生物素聚乙二醇乙烯砜,VS基团容易与游离巯基发生反应

●中文名&#xff1a;乙烯砜PEG生物素&#xff0c;生物素聚乙二醇乙烯砜 ●英文名&#xff1a;Vinylsulfone PEG Biotin, VS-PEG-Biotin&#xff0c;Vinyl sulfone-PEG-Biotin&#xff0c;Biotins-PEG-sulfone Vinyl●产品理化指标&#xff1a; CAS号&#xff1a;N/A 分子量&am…...

论文学习——Tune-A-Video

Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation Abstract 本文提出了一种方法&#xff0c;站在巨人的肩膀上——在大规模图像数据集上pretrain并表现良好的 text to image 生成模型——加入新结构并进行微调&#xff0c;训练出一套 …...

C++类与对象part1

目录 1.类的6个默认函数 2.构造函数&#xff08;相当于init&#xff09; 3.析构函数 &#xff08;相当于destroy&#xff09; 4.拷贝构造函数 赋值运算符重载 运算符重载 赋值运算符重载 引入&#xff1a; 你知道为什么cout可以自动识别类型吗&#xff1f; 其实cout是一…...

记一次抓取网页内容

已打码 // UserScript // name --------- // namespace http://tampermonkey.net/ // version 0.1 // description https://---------oups/{id}/topics?scopeall&count20&begin_time2022-09-01T00%3A00%3A00.000%2B0800&end_time2022-10-01T00%…...

parasoft帮助史密斯医疗通过测试驱动开发提供安全、高质量的医疗设备

parasoft是一家专门提供软件测试解决方案的公司&#xff0c;Parasoft通过其经过市场验证的自动化软件测试工具集成套件&#xff0c;帮助企业持续交付高质量的软件。Parasoft的技术支持嵌入式、企业和物联网市场&#xff0c;通过将静态代码分析和单元测试、Web UI和API测试等所有…...

SpringBoot整合Oauth2开放平台接口授权案例

<!-- SpringBoot整合Web组件 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.projectlombok</groupId>&l…...

Linux_创建用户

创建一个名为hello的用户&#xff0c;并指定/home/hello为根目录useradd -d /home/hello -m hello 设置密码 ,密码会输入两次&#xff0c;一次设置密码&#xff0c;一次确认密码&#xff0c;两次密码要输入的一样passwd hellouseradd的常用参数含义-d指定用户登入时的主目录&am…...

RDD(弹性分布式数据集)总结

文章目录一、设计背景二、RDD概念三、RDD特性四、RDD之间的依赖关系五、阶段的划分六、RDD运行过程七、RDD的实现一、设计背景 1.某些应用场景中&#xff0c;不同计算阶段之间会重用中间结果&#xff0c;即一个阶段的输出结果会作为下一个阶段的输入。如&#xff1a;迭代式算法…...

服务器版RstudioServer安装与配置详细教程

Docker部署Rstudio server 背景&#xff1a;如果您想在服务器上运行RstudioServer&#xff0c;可以按照如下方法进行操作&#xff0c;笔者测试时使用腾讯云服务器&#xff08;系统centos7&#xff09;&#xff0c;需要在管理员权限下运行 Rstudio 官方提供了使用不同 R 版本的 …...

如何在Java中将一个列表拆分为多个较小的列表

在Java中&#xff0c;有多种方法可以将一个列表拆分为多个较小的列表。在本文中&#xff0c;我们将介绍三种不同的方法来实现这一目标。 方法一&#xff1a;使用List.subList()方法 List接口提供了一个subList()方法&#xff0c;它可以用来获取列表中的一部分元素。我们可以使…...

TryHackMe-Inferno(boot2root)

Inferno 现实生活中的机器CTF。该机器被设计为现实生活&#xff08;也许不是&#xff1f;&#xff09;&#xff0c;非常适合刚开始渗透测试的新手 “在我们人生旅程的中途&#xff0c;我发现自己身处一片黑暗的森林中&#xff0c;因为直截了当的道路已经迷失了。我啊&#xf…...

微信原生开发中 JSON配置文件的作用 小程序中有几种JSON配制文件

关于json json是一种数据格式&#xff0c;在实际开发中&#xff0c;JSON总是以配制文件的形式出现&#xff0c;小程序与不例外&#xff0c;可对项目进行不同级别的配制。Q&#xff1a;小程序中有几种配制文件A:小程序中有四种配制文件分别是&#xff1a;project.config.json si…...

【python】为什么使用python Django开发网站这么火?

关注“测试开发自动化” 弓中皓&#xff0c;获取更多学习内容&#xff09; Django 是一个基于 Python 的 Web 开发框架&#xff0c;它提供了许多工具和功能&#xff0c;使开发者可以更快地构建 Web 应用程序。以下是 Django 开发中的一些重要知识点&#xff1a; MTV 模式&#…...

Java设计模式(五)—— 责任链模式

责任链模式定义如下&#xff1a;使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者与接收者之间的耦合关系。将这些对象连成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;知道有一个对象处理它为止。 适合使用责任链模式的情景如下&#xff1a; 有许多对…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...