目标检测-YOLOv2
YOLOv2介绍
YOLOv2(You Only Look Once version 2)是一种用于目标检测的深度学习模型,由Joseph Redmon等人于2016年提出,并详细论述在其论文《YOLO9000: Better, Faster, Stronger》中。YOLOv2在保持高速检测的同时,显著提升了检测的精度和泛化能力,成为实时目标检测领域的重要算法之一。
核心原理
YOLOv2的核心原理是将目标检测问题转化为回归问题,通过在图像上划分网格并在每个网格上预测边界框(bounding boxes)和类别概率来实现目标检测。具体来说,其操作步骤包括:
- 图像划分网格:将输入图像分成固定大小的网格,每个网格负责检测图像中的物体。
- 预测边界框:对于每个网格,模型预测多个边界框,每个边界框由中心坐标、宽度、高度以及目标的置信度组成。置信度表示模型认为该边界框包含物体的概率。
- 类别预测:同时,模型还会对每个边界框预测所属物体的类别。
- 输出处理:通过筛选置信度高的边界框,并采用非极大值抑制(NMS)来移除冗余的边界框,最终得到检测结果。
网络结构
YOLOv2使用Darknet-19作为其基础网络结构,这是一个包含19个卷积层和5个最大池化层的深度卷积神经网络。Darknet-19的设计哲学是减少计算量,同时保持足够的特征表达能力。此外,YOLOv2还引入了特征金字塔网络(FPN)来捕捉不同尺度的特征,提高对不同大小目标的检测能力。
关键技术
- 批量归一化:显著提高收敛性,同时消除对其他形式正则化的需要。
- 高分辨率分类器:在ImageNet上以全448×448分辨率微调分类网络,使网络在更高分辨率的输入上更好地工作。
- 锚框(Anchor Boxes):使用预定义的边界框作为先验,以提高对不同大小目标的检测能力。
- 维度聚类:通过k均值聚类自动找到好的先验框,使网络更容易学习预测好的检测。
- 直接位置预测:预测边界框中心位置,限制预测值在0和1之间,使网络更加稳定。
- 细粒度特征:通过添加一个直通层,将高分辨率特征与低分辨率特征连接起来,以检测更小的目标。
- 多尺度训练:在训练过程中改变输入图像的尺寸,以提高模型的泛化能力。
应用场景
YOLOv2能够应用于多种场景,包括但不限于:
- 视频监控:用于实时检测视频中的人脸、车辆等目标。
- 自动驾驶:用于检测道路上的车辆、行人和交通标志。
- 医学图像分析:用于识别和定位医学图像中的病变区域。
- 机器人视觉:用于机器人导航和物体识别。
代码演示
由于YOLOv2的实现通常涉及到复杂的网络结构和后处理步骤(如非极大值抑制),以下代码演示将是一个简化的版本,侧重于如何加载预训练的YOLOv2模型并使用它进行目标检测。请注意,这里不会从头开始训练模型,而是使用已经训练好的模型。
首先,你需要有YOLOv2的预训练权重和配置文件(通常是.weights和.cfg文件),以及一个用于解析这些文件并将其转换为适合进行预测的格式的库,如OpenCV的dnn模块或专门的YOLO库(如yolov2-pytorch、darknet等)。
以下是一个使用OpenCV的dnn模块加载YOLOv2模型并进行目标检测的示例代码:
import cv2
import numpy as np# 加载网络配置和权重
net = cv2.dnn.readNet("yolov2.cfg", "yolov2.weights")
classes = []
with open("coco.names", "r") as f:classes = [line.strip() for line in f.readlines()]# 加载图像
img = cv2.imread("test.jpg")
img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape# 检测图像
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())# 显示信息
class_ids = []
confidences = []
boxes = []
for out in outs:for detect in out:scores = detect[5:]class_id = np.argmax(scores)confidence = scores[class_id]if confidence > 0.5:# 对象检测center_x = int(detect[0] * width)center_y = int(detect[1] * height)w = int(detect[2] * width)h = int(detect[3] * height)# 矩形框坐标x = int(center_x - w / 2)y = int(center_y - h / 2)boxes.append([x, y, w, h])confidences.append(float(confidence))class_ids.append(class_id)# 非极大值抑制
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)# 绘制边界框
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):if i in indexes:x, y, w, h = boxes[i]label = str(classes[class_ids[i]])color = (0, 255, 0) # 绿色cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)cv2.putText(img, label, (x, y - 5), font, 2, color, 2)# 显示图像
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
注意:
-
上述代码中的
"yolov2.cfg","yolov2.weights", 和"coco.names"需要你根据自己的实际情况进行替换。这些文件通常来自YOLOv2的官方发布或社区提供的预训练模型。 -
cv2.dnn.blobFromImage函数用于将图像转换为网络可以接受的格式,并应用必要的预处理(如缩放、归一化等)。 -
net.forward函数执行前向传播,并返回输出层的特征图。这些特征图需要进一步解析以获取边界框、置信度和类别信息。 -
cv2.dnn.NMSBoxes函数用于执行非极大值抑制,以消除多余的边界框。 -
最后,代码使用OpenCV的绘图函数在图像上绘制边界框和类别标签。
相关文章:
目标检测-YOLOv2
YOLOv2介绍 YOLOv2(You Only Look Once version 2)是一种用于目标检测的深度学习模型,由Joseph Redmon等人于2016年提出,并详细论述在其论文《YOLO9000: Better, Faster, Stronger》中。YOLOv2在保持高速检测的同时,显…...
大数据 - OLAP与OLTP的区别
前言 联机事务处理OLTP(on-line transaction processing)和 联机分析处理OLAP(On-Line Analytical Processing)。 OLTP,主要是面向传统的“增删改查”事务系统,数据大都是以实体对象模型来存储数据&#…...
win10+eclipse+ESP8266_RTOS_SDK开发环境构建
官网教程 https://docs.espressif.com/projects/esp8266-rtos-sdk/en/latest/get-started/eclipse-setup.html 1. 导入工程 Build and Flash with Eclipse IDE — ESP8266 RTOS SDK Programming Guide documentation (espressif.com) 导入整个SDK,便于查看所有代…...
树形弹窗选择框/vue2/Element/弹框选择
前言 此类选择器根据vueelementUI实现,使用vue3的可以根据此案例稍作改动即可实现,主要功能有弹出选择、搜索过滤、搜索结果高亮等,此选择器只支持单选,如需多选可在此基础进行改造。 效果图 代码实现 使用时,props-…...
Python精选200Tips:121-125
Spend your time on self-improvement 121 Requests - 简化的 HTTP 请求处理发送 GET 请求发送 POST 请求发送 PUT 请求发送 DELETE 请求会话管理处理超时文件上传122 Beautiful Soup - 网页解析和抓取解析 HTML 和 XML 文档查找单个标签查找多个标签使用 CSS 选择器查找标签提…...
对接后端download接口报未知异常错误
你一定遇到过这种情况,在一个项目中下载功能明明好好的,下载接口调用方法与前端调用方法封装的好好的,可是换了一个接口,竟然搞罢工了,类似下面这样的,你会不会无从下手,不知道该怎么办呢&#…...
vue3 指定元素全屏 screenfull(可直接粘贴使用)
业务需求 由于输入的文字较多,需要将输入框进行全屏展示,方便输入和查看! 效果图 实现方式 下载插件"screenfull": “^6.0.2” yarn add screenfull -S项目中使用 import screenfull from "screenfull"templte中代码…...
【规范】Git Commit 约定式提交规范
文章目录 前言介绍使用约定式提交规范的好处提交信息格式信息头部(Header)正文(Body)脚注(Footer)撤销(Revert) 提交类型表格官网 前言介绍 约定式提交规范它是一种基于提交信息的轻…...
GDB的基本使用方法(之一)
1.编译程序 如果要让GDB调试程序,则编译生成程序时,要添加-g编译选项: $gcc -Wall -O2 -g 源文件 编译器含有针对源代码中的各种各样的错误输出信息的功能,称为警告选项。这些信息并不一定是错误,但却指出了容易引发bug的编码方式。-Werror选项可以在警告发生时,将其当…...
DoubletFinder去除双细胞分析学习
在单细胞RNA测序过程中,有时两个或多个细胞可能在制备过程中意外结合成一个单一的"假细胞",称为双峰细胞或双倍体。这些双峰细胞可能会扭曲数据分析和解释,因此,需要使用一些方法对它们进行识别和剔除。其中DoubletFind…...
软考高级第四版备考---第四十八天(项目基本要素-项目项目、项目集、项目组合和运营管理之间的关系)
一、概述: 项目集是一组相互关联且被协调管理的项目、子项目集和项目集活动,目的是为了获得分别管理无法获得的利益。项目集不是大项目,大项目是指规模、影响等特别大的项目; 项目组合是指为实现战略目标而组合在一起管理的项目、…...
系统架构设计师:信息系统基础知识
简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师:信息系统基础知识前言信息系统构成:信息系统功能:信息系统生命周期…...
微服务-nacos
nacos-注册中心 启动 服务注册到nacos...
快速上手 | 数据可观测性平台 Datavines 自定义SQL规则使用指南
摘要 本文主要介绍在 Datavines平台已有规则不能满足需求的情况下,如何通过自定义SQL规则来实现基于业务特性的数据质量检查。 规则介绍 自定义聚合SQL规则是 Datavines 平台中内置的一个灵活的规则,该规则允许用户通过编写SQL的方式来实现想要的数据质…...
MySQL零基础入门教程-6 查询去重、内外连接查询、子查询、分页查询DQL,基础+实战
教程来源:B站视频BV1Vy4y1z7EX 001-数据库概述_哔哩哔哩_bilibili 我听课收集整理的课程的完整笔记,供大家学习交流下载:夸克网盘分享 本文内容为完整笔记的第六篇 分组查询&DQL总结P41-P66 1、把查询结果去除重复记录 注意…...
Elastic:如何将数据转化为可操作的见解?
作者:来自 Elastic Elastic Platform Team 一切,从某种程度上说,每个人,都是数据。在我们这个数据驱动的世界里,我们的兴趣和互动被统计和分类,为组织提供如何创造更好的产品和更好的体验的见解。更不用说&…...
基于SSM和VUE的药品管理系统(含源码+sql+视频导入教程+文档)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于SSM和VUE的药品管理系统2拥有两种角色 管理员:药品管理、出库管理、入库管理、销售员管理、报损管理等 销售员:登录注册、入库、出库、销售、报损等 1.1 背景…...
机器学习--神经网络
神经网络 计算 神经网络非常简单,举个例子就理解了(最后一层的那个写错了,应该是 a 1 ( 3 ) a^{(3)}_1 a1(3)): n o t a t i o n notation notation: a j ( i ) a^{(i)}_j aj(i) 表示第 i i i 层的…...
post请求中有[]报400异常
序言 在和前端同学联调的时候,发现只要post请求参数里面有[],就会报400的错误 可以看到日志中: The valid characters are defined in RFC 7230 and RFC 3986 解决办法: 参考了博客: spring boot 中解决post请求中有…...
ad22 如何在pcb 的keepout layout 上画线 然后裁出想要的黑色画布大小
选择下面的keepout layout,然后右键打开,然后按照这个图进行选择 然后看这个界面我收藏的第三个,就可以了...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
