当前位置: 首页 > news >正文

目标检测-YOLOv2

YOLOv2介绍

YOLOv2(You Only Look Once version 2)是一种用于目标检测的深度学习模型,由Joseph Redmon等人于2016年提出,并详细论述在其论文《YOLO9000: Better, Faster, Stronger》中。YOLOv2在保持高速检测的同时,显著提升了检测的精度和泛化能力,成为实时目标检测领域的重要算法之一。

核心原理

YOLOv2的核心原理是将目标检测问题转化为回归问题,通过在图像上划分网格并在每个网格上预测边界框(bounding boxes)和类别概率来实现目标检测。具体来说,其操作步骤包括:

  1. 图像划分网格:将输入图像分成固定大小的网格,每个网格负责检测图像中的物体。
  2. 预测边界框:对于每个网格,模型预测多个边界框,每个边界框由中心坐标、宽度、高度以及目标的置信度组成。置信度表示模型认为该边界框包含物体的概率。
  3. 类别预测:同时,模型还会对每个边界框预测所属物体的类别。
  4. 输出处理:通过筛选置信度高的边界框,并采用非极大值抑制(NMS)来移除冗余的边界框,最终得到检测结果。
网络结构

YOLOv2使用Darknet-19作为其基础网络结构,这是一个包含19个卷积层和5个最大池化层的深度卷积神经网络。Darknet-19的设计哲学是减少计算量,同时保持足够的特征表达能力。此外,YOLOv2还引入了特征金字塔网络(FPN)来捕捉不同尺度的特征,提高对不同大小目标的检测能力。

关键技术
  1. 批量归一化:显著提高收敛性,同时消除对其他形式正则化的需要。
  2. 高分辨率分类器:在ImageNet上以全448×448分辨率微调分类网络,使网络在更高分辨率的输入上更好地工作。
  3. 锚框(Anchor Boxes):使用预定义的边界框作为先验,以提高对不同大小目标的检测能力。
  4. 维度聚类:通过k均值聚类自动找到好的先验框,使网络更容易学习预测好的检测。
  5. 直接位置预测:预测边界框中心位置,限制预测值在0和1之间,使网络更加稳定。
  6. 细粒度特征:通过添加一个直通层,将高分辨率特征与低分辨率特征连接起来,以检测更小的目标。
  7. 多尺度训练:在训练过程中改变输入图像的尺寸,以提高模型的泛化能力。
应用场景

YOLOv2能够应用于多种场景,包括但不限于:

  • 视频监控:用于实时检测视频中的人脸、车辆等目标。
  • 自动驾驶:用于检测道路上的车辆、行人和交通标志。
  • 医学图像分析:用于识别和定位医学图像中的病变区域。
  • 机器人视觉:用于机器人导航和物体识别。

代码演示

由于YOLOv2的实现通常涉及到复杂的网络结构和后处理步骤(如非极大值抑制),以下代码演示将是一个简化的版本,侧重于如何加载预训练的YOLOv2模型并使用它进行目标检测。请注意,这里不会从头开始训练模型,而是使用已经训练好的模型。

首先,你需要有YOLOv2的预训练权重和配置文件(通常是.weights.cfg文件),以及一个用于解析这些文件并将其转换为适合进行预测的格式的库,如OpenCV的dnn模块或专门的YOLO库(如yolov2-pytorchdarknet等)。

以下是一个使用OpenCV的dnn模块加载YOLOv2模型并进行目标检测的示例代码:

import cv2
import numpy as np# 加载网络配置和权重
net = cv2.dnn.readNet("yolov2.cfg", "yolov2.weights")
classes = []
with open("coco.names", "r") as f:classes = [line.strip() for line in f.readlines()]# 加载图像
img = cv2.imread("test.jpg")
img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape# 检测图像
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())# 显示信息
class_ids = []
confidences = []
boxes = []
for out in outs:for detect in out:scores = detect[5:]class_id = np.argmax(scores)confidence = scores[class_id]if confidence > 0.5:# 对象检测center_x = int(detect[0] * width)center_y = int(detect[1] * height)w = int(detect[2] * width)h = int(detect[3] * height)# 矩形框坐标x = int(center_x - w / 2)y = int(center_y - h / 2)boxes.append([x, y, w, h])confidences.append(float(confidence))class_ids.append(class_id)# 非极大值抑制
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)# 绘制边界框
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):if i in indexes:x, y, w, h = boxes[i]label = str(classes[class_ids[i]])color = (0, 255, 0) # 绿色cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)cv2.putText(img, label, (x, y - 5), font, 2, color, 2)# 显示图像
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

注意

  1. 上述代码中的"yolov2.cfg", "yolov2.weights", 和 "coco.names" 需要你根据自己的实际情况进行替换。这些文件通常来自YOLOv2的官方发布或社区提供的预训练模型。

  2. cv2.dnn.blobFromImage 函数用于将图像转换为网络可以接受的格式,并应用必要的预处理(如缩放、归一化等)。

  3. net.forward 函数执行前向传播,并返回输出层的特征图。这些特征图需要进一步解析以获取边界框、置信度和类别信息。

  4. cv2.dnn.NMSBoxes 函数用于执行非极大值抑制,以消除多余的边界框。

  5. 最后,代码使用OpenCV的绘图函数在图像上绘制边界框和类别标签。

相关文章:

目标检测-YOLOv2

YOLOv2介绍 YOLOv2(You Only Look Once version 2)是一种用于目标检测的深度学习模型,由Joseph Redmon等人于2016年提出,并详细论述在其论文《YOLO9000: Better, Faster, Stronger》中。YOLOv2在保持高速检测的同时,显…...

大数据 - OLAP与OLTP的区别

前言 联机事务处理OLTP(on-line transaction processing)和 联机分析处理OLAP(On-Line Analytical Processing)。 OLTP,主要是面向传统的“增删改查”事务系统,数据大都是以实体对象模型来存储数据&#…...

win10+eclipse+ESP8266_RTOS_SDK开发环境构建

官网教程 https://docs.espressif.com/projects/esp8266-rtos-sdk/en/latest/get-started/eclipse-setup.html 1. 导入工程 Build and Flash with Eclipse IDE — ESP8266 RTOS SDK Programming Guide documentation (espressif.com) 导入整个SDK,便于查看所有代…...

树形弹窗选择框/vue2/Element/弹框选择

前言 此类选择器根据vueelementUI实现,使用vue3的可以根据此案例稍作改动即可实现,主要功能有弹出选择、搜索过滤、搜索结果高亮等,此选择器只支持单选,如需多选可在此基础进行改造。 效果图 代码实现 使用时,props-…...

Python精选200Tips:121-125

Spend your time on self-improvement 121 Requests - 简化的 HTTP 请求处理发送 GET 请求发送 POST 请求发送 PUT 请求发送 DELETE 请求会话管理处理超时文件上传122 Beautiful Soup - 网页解析和抓取解析 HTML 和 XML 文档查找单个标签查找多个标签使用 CSS 选择器查找标签提…...

对接后端download接口报未知异常错误

你一定遇到过这种情况,在一个项目中下载功能明明好好的,下载接口调用方法与前端调用方法封装的好好的,可是换了一个接口,竟然搞罢工了,类似下面这样的,你会不会无从下手,不知道该怎么办呢&#…...

vue3 指定元素全屏 screenfull(可直接粘贴使用)

业务需求 由于输入的文字较多,需要将输入框进行全屏展示,方便输入和查看! 效果图 实现方式 下载插件"screenfull": “^6.0.2” yarn add screenfull -S项目中使用 import screenfull from "screenfull"templte中代码…...

【规范】Git Commit 约定式提交规范

文章目录 前言介绍使用约定式提交规范的好处提交信息格式信息头部(Header)正文(Body)脚注(Footer)撤销(Revert) 提交类型表格官网 前言介绍 约定式提交规范它是一种基于提交信息的轻…...

GDB的基本使用方法(之一)

1.编译程序 如果要让GDB调试程序,则编译生成程序时,要添加-g编译选项: $gcc -Wall -O2 -g 源文件 编译器含有针对源代码中的各种各样的错误输出信息的功能,称为警告选项。这些信息并不一定是错误,但却指出了容易引发bug的编码方式。-Werror选项可以在警告发生时,将其当…...

DoubletFinder去除双细胞分析学习

在单细胞RNA测序过程中,有时两个或多个细胞可能在制备过程中意外结合成一个单一的"假细胞",称为双峰细胞或双倍体。这些双峰细胞可能会扭曲数据分析和解释,因此,需要使用一些方法对它们进行识别和剔除。其中DoubletFind…...

软考高级第四版备考---第四十八天(项目基本要素-项目项目、项目集、项目组合和运营管理之间的关系)

一、概述: 项目集是一组相互关联且被协调管理的项目、子项目集和项目集活动,目的是为了获得分别管理无法获得的利益。项目集不是大项目,大项目是指规模、影响等特别大的项目; 项目组合是指为实现战略目标而组合在一起管理的项目、…...

系统架构设计师:信息系统基础知识

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师:信息系统基础知识前言信息系统构成:信息系统功能:信息系统生命周期…...

微服务-nacos

nacos-注册中心 启动 服务注册到nacos...

快速上手 | 数据可观测性平台 Datavines 自定义SQL规则使用指南

摘要 本文主要介绍在 Datavines平台已有规则不能满足需求的情况下,如何通过自定义SQL规则来实现基于业务特性的数据质量检查。 规则介绍 自定义聚合SQL规则是 Datavines 平台中内置的一个灵活的规则,该规则允许用户通过编写SQL的方式来实现想要的数据质…...

MySQL零基础入门教程-6 查询去重、内外连接查询、子查询、分页查询DQL,基础+实战

教程来源:B站视频BV1Vy4y1z7EX 001-数据库概述_哔哩哔哩_bilibili 我听课收集整理的课程的完整笔记,供大家学习交流下载:夸克网盘分享 本文内容为完整笔记的第六篇 分组查询&DQL总结P41-P66 1、把查询结果去除重复记录 注意&#xf…...

Elastic:如何将数据转化为可操作的见解?

作者:来自 Elastic Elastic Platform Team 一切,从某种程度上说,每个人,都是数据。在我们这个数据驱动的世界里,我们的兴趣和互动被统计和分类,为组织提供如何创造更好的产品和更好的体验的见解。更不用说&…...

基于SSM和VUE的药品管理系统(含源码+sql+视频导入教程+文档)

👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 基于SSM和VUE的药品管理系统2拥有两种角色 管理员:药品管理、出库管理、入库管理、销售员管理、报损管理等 销售员:登录注册、入库、出库、销售、报损等 1.1 背景…...

机器学习--神经网络

神经网络 计算 神经网络非常简单,举个例子就理解了(最后一层的那个写错了,应该是 a 1 ( 3 ) a^{(3)}_1 a1(3)​): n o t a t i o n notation notation: a j ( i ) a^{(i)}_j aj(i)​ 表示第 i i i 层的…...

post请求中有[]报400异常

序言 在和前端同学联调的时候,发现只要post请求参数里面有[],就会报400的错误 可以看到日志中: The valid characters are defined in RFC 7230 and RFC 3986 解决办法: 参考了博客: spring boot 中解决post请求中有…...

ad22 如何在pcb 的keepout layout 上画线 然后裁出想要的黑色画布大小

选择下面的keepout layout,然后右键打开,然后按照这个图进行选择 然后看这个界面我收藏的第三个,就可以了...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...