当前位置: 首页 > news >正文

【编程基础知识】mysql中的insert into ... on DUPLICATE key和replace into的性能对比

一、概述

在MySQL中,INSERT INTO ... ON DUPLICATE KEY UPDATEREPLACE INTO 都是用来处理插入或更新数据的语句,但它们在性能和行为上有所不同。

二、REPLACE INTO

REPLACE INTO 语句在遇到唯一键或主键冲突时,会先删除旧记录,然后插入新记录。这意味着它会执行两次操作:删除(DELETE)和插入(INSERT)。这种操作在有大量数据和高并发的环境中可能会比较慢,因为它涉及到两次磁盘I/O操作。此外,REPLACE INTO 可能会导致自增主键的值增加,这在主从复制的环境中可能会引起问题,因为从库执行更新操作时不会导致自增主键值的增加,这可能会导致主从数据不一致。

三、INSERT INTO … ON DUPLICATE KEY UPDATE

另一方面,INSERT INTO ... ON DUPLICATE KEY UPDATE 语句在遇到唯一键或主键冲突时,只会更新现有记录的指定字段,而不会删除和重新插入记录。这通常比 REPLACE INTO 更有效率,因为它只涉及到一次更新操作,减少了磁盘I/O操作。此外,ON DUPLICATE KEY UPDATE 不会影响自增主键的值,这对于保持数据的一致性非常有用。

四、性能对比

1、在性能方面,INSERT INTO ... ON DUPLICATE KEY UPDATE 通常被认为比 REPLACE INTO 更优,尤其是在处理大型数据集和高并发环境时。这是因为它减少了对磁盘的操作次数,并且能够更好地维护数据的一致性。

2、当数据库表的内容数量较大时(如百万级),INSERT INTO ... ON DUPLICATE KEY UPDATE 的更新操作比 REPLACE INTO 更快,因为它对索引的维护成本较低。而 REPLACE INTO 在更新数据时要先删除旧的记录,然后插入新的记录,这个过程还要重新维护索引,所以速度较慢 。

3、因此,如果你追求效率并且需要保持数据一致性,推荐使用 INSERT INTO ... ON DUPLICATE KEY UPDATE。但是,具体的选择还需要根据实际的业务需求和数据模型来决定。

相关文章:

【编程基础知识】mysql中的insert into ... on DUPLICATE key和replace into的性能对比

一、概述 在MySQL中,INSERT INTO ... ON DUPLICATE KEY UPDATE 和 REPLACE INTO 都是用来处理插入或更新数据的语句,但它们在性能和行为上有所不同。 二、REPLACE INTO REPLACE INTO 语句在遇到唯一键或主键冲突时,会先删除旧记录&#xf…...

【CSS in Depth 2 精译_024】4.2 弹性子元素的大小

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对…...

你需要尝试的5种讲故事模板

好消息:你不需要成为一位创意写作专家也能讲述一个精彩的故事。 坏消息: 任何人 都可以写一篇博客,或者在社交媒体上发表一些内容,或者拼凑一个故事演示。你需要在大量竞争中抓住目标受众的注意力——更糟的是,内容过…...

只需两步便可生成 51 单片机最精准的延时函数

前言# 我们在学习 51 单片机的过程中会用到延时,比如一个简单的流水灯就需要延时来控制依次点亮的时间,或者一些模块在单片机发出读数据指令后,需要延时几十微秒才可以读出数据等等,这些都离不开延时,所以我们需要一个…...

TETFN情感计算的实践复现(论文复现)

TETFN情感计算的实践复现(论文复现) 本文所涉及所有资源均在传知代码平台可获取 文章目录 TETFN情感计算的实践复现(论文复现)概述研究背景主要贡献模型框架数据介绍及下载复现过程(重要)运行过程及结果 概…...

游戏各个知识小点汇总

抗锯齿原理记录 SSAA:把成像的图片放大N倍,然后每N个点进行平均值计算。一般N为2的倍数。比如原始尺寸是1000x1000,长宽各放大2倍变成2000x2000。 举例: 原始尺寸: 放大2倍后 最后平均值计算成像: MSAA&…...

Python设计模式实战:开启软件设计的精进之旅

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...

用RNN(循环神经网络)预测股票价格

RNN(循环神经网络)是一种特殊类型的神经网络,它能够处理序列数据,并且具有记忆先前信息的能力。这种网络结构特别适合于处理时间序列数据、文本、语音等具有时间依赖性的问题。RNN的核心特点是它可以捕捉时间序列中的长期依赖关系…...

08-图7 公路村村通(C)

很明显聪明的同学已经发现,这是一个稠密图,所以用邻接矩阵。可以很好的表达,比邻接表有优势,所以,采用邻接矩阵破题, 当然也可以用邻接表,仔细观察我的AC,会发现其实都一样,只是存储…...

Java-sleep()、wait()、join()、yield()的区别

关于线程,作为八股文面试中必问点,我们需要充分了解sleep()、wait()、join()以及yield()的区别。在正式开始之前先让我们了解两个概念:锁池和等待池 1.锁池 所有需要竞争同步锁的线程都会放在锁池当中,比如当前对象的锁已经被其中…...

Linux命令的补全和自动完成完全开启

前言 在安装好RockyLinux8.8后,输入dn后,按下“TAB”能自动提示,但在输入dnf make后,按下“TAB”不能实现自动补全,如果要使Linux的Bash支持完整的自动提示和补全功能,还需要执行一些其它操作。 内容 1、…...

Deep Active Contours for Real-time 6-DoF Object Tracking

这篇论文解决了从RGB视频进行实时6自由度(6-DoF)物体跟踪的问题。此前的基于优化的方法通过对齐投影模型与图像来优化物体姿态,这种方法依赖于手工设计的特征,因此容易陷入次优解。最近的基于学习的方法使用神经网络来预测姿态&am…...

IDEA安装教程配置java环境(超详细)

引言 IntelliJ IDEA 是一款功能强大的集成开发环境(IDE),广泛用于 Java 开发,但也支持多种编程语言,如 Kotlin、Groovy 和 Scala。本文将为你提供一步一步的指南,帮助你在 Windows 系统上顺利安装 Intelli…...

Excel文档的读取(1)

熟悉使用Excel的同学应该都知道,在单个Excel表格里想要分商品计算总销售额,使用数据透视表也可以非常快速方便的获得结果。但当有非常大量的Excel文件需要处理时,每一个Excel文件单独去做数据透视也会消耗大量的时间。就算使用Power Query这样…...

Linux:体系结构和操作系统管理

目录 一、冯诺依曼体系结构 1.问题1 2.问题2 二、操作系统管理 一、冯诺依曼体系结构 本章将会谈论一下对冯诺依曼计算机体系结构的理解。 在2024年,几乎所有的计算机,都遵守冯诺依曼体系结构。 冯诺依曼体系结构是应用在硬件层面的,而硬…...

c++ install boost lib

同步系统上的软件包列表 sudo apt-update 整个库安装: sudo apt-get install libboost-all-dev 安装部分库: sudo apt-get install libboost-thread-dev sudo apt-get install libboost-filesystem-dev 链接时加上: -lboost_filesystem -lboost_system 例如: g -Wall -o bo…...

文件加密最简单的方法有哪些?十个电脑文件加密方法【超详细】

在当今数字化和信息化的时代,数据已成为企业最重要的资产之一。内部数据外泄不仅可能导致商业秘密的丧失,还可能对企业的声誉和财务健康造成严重影响。为了有效防止内部数据外泄,企业需要实施综合的防泄密解决方案。以下是十大最佳防泄密解决…...

IPv6地址的表示方法

IPv6地址总长度为128比特,通常分为8组,每组为4个十六进制数的形式,每组十六进制数间用冒号分隔。 例如:2409:8745:039a:c700:0000:0000:0162,这是IPv6地址的首选格式。 为了书写方便,IPv6还提供了压缩格式…...

Kubernetes 之 kubelet 与 CRI、CNI 的交互过程

序言 当一个新的 Pod 被提交创建之后,Kubelet、CRI、CNI 这三个组件之间进行了哪些交互? Kubelet -> CRI -> CNI 如上图所示: Kubelet 从 kube-api-server 处监听到有新的 pod 被调度到了自己的节点且需要创建。Kubelet 创建 sandbo…...

【python】OpenCV—Age and Gender Classification

文章目录 1、任务描述2、网络结构2.1 人脸检测2.2 性别分类2.3 年龄分类 3、代码实现4、结果展示5、参考 1、任务描述 性别分类和年龄分类预测 2、网络结构 2.1 人脸检测 输出最高的 200 个 RoI,每个 RoI 7 个值,(xx,xx&#x…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...

DAY 45 超大力王爱学Python

来自超大力王的友情提示&#xff1a;在用tensordoard的时候一定一定要用绝对位置&#xff0c;例如&#xff1a;tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾&#xff1a; tensorboard的发展历史和原理tens…...