当前位置: 首页 > news >正文

Transformer学习(2):自注意力机制

回顾

注意力机制

在这里插入图片描述

自注意力机制

在这里插入图片描述

自注意力机制中同样包含QKV,但它们是同源(Q≈K≈V),也就是来自相同的输入数据X,X可以分为 ( x 1 , x 2 , . . , x n ) (x_1,x_2,..,x_n) (x1,x2,..,xn)
而通过输入嵌入层(input embedding) ( x 1 , x 2 , . . , x n ) (x_1,x_2,..,x_n) (x1,x2,..,xn)变为 ( a 1 , a 2 , . . , a n ) (a_1,a_2,..,a_n) (a1,a2,..,an)这些向量,通过X来寻找X中的关键点。

而对于每个 a i a_i ai都会有对应 q i , k i , v i q_i,k_i,v_i qi,ki,vi,Q不再是共用的。
Q = { q 1 , q 2 , . . . , q n } ; K = { k 1 , k 2 , . . . , k n } ; V = { v 1 , v 2 , . . . , v n } Q = \{q_1,q_2,...,q_n\};K = \{k_1,k_2,...,k_n\};V = \{v_1,v_2,...,v_n\} Q={q1,q2,...,qn};K={k1,k2,...,kn};V={v1,v2,...,vn}

在自注意力机制中,以输入数据X自身中的 x i x_i xi作为查询对象(注意力机制中的Q),自身的其他 x x x作为被查询对象V。也就是自己作为查询与被查询对象。

计算过程

① 计算QKV:
要得到QKV,则需要使用三个参数 W Q , W K , W V W_Q,W_K,W_V WQ,WK,WV这三个参数都是可训练的,而且所有 a a a共享。
公式:
q i = a i ∗ W Q q_i = a_i*W_Q qi=aiWQ
k i = a i ∗ W K k_i = a_i*W_K ki=aiWK
v i = a i ∗ W V v_i = a_i*W_V vi=aiWV

在这里插入图片描述
而这个计算过程可以写为矩阵乘法,实现并行计算。
在这里插入图片描述
② 计算Q与K相似度(概率)
每个 q i q_i qi都有一次作为查询对象,所有的 k k k计算与其的相似度(与它相同的概率)
计算相似度的方法与注意力机制是相同,都是q与k进行点乘与scale得到相似度,其中 d k d_k dk为k的尺寸,也就是向量 k k k包含多少个数据
在这里插入图片描述

计算过程如图所示,每个 q i q_i qi都计算与所有 k k k的相似度
,
计算过程也可以表示为矩阵运算
在这里插入图片描述

③ 汇总权重,得到包含注意力信息的结果
计算出Q与K的相似度,也就是得到了对于 q i q_i qi,各个 v i v_i vi的权重
最后将得到的权重 a ^ \widehat{a} a 与每个 v i v_i vi进行点乘运算再将结果相加,就可以得到包含了对于 q i q_i qil来说哪些重要与不重要的数据 b i b_i bi,然后用 b i b_i bi来代替 a i a_i ai
在这里插入图片描述
计算过程也可以转换为矩阵运算
在这里插入图片描述

与注意力机制的不同

注意力机制是一个很宽泛(宏大)的一个概念,QKV 相乘就是注意力,但是他没有规定 QKV是怎么来的,他只规定 QKV 怎么做
Q 可以是任何一个东西,V 也是任何一个东西, K往往是等同于 V 的(同源),K和 V 不同源不相等可不可以。

而自注意力机制,特别狭隘,属于注意力机制的,注意力机制包括自注意力机制的,他不仅规定了 QKV 同源,而且固定了 QKV 的做法,规定了QKV是如何得到的。

总结

自注意力机制是规定了数据自身来作为查询对象与被查询对象。

相关文章:

Transformer学习(2):自注意力机制

回顾 注意力机制 自注意力机制 自注意力机制中同样包含QKV,但它们是同源(Q≈K≈V),也就是来自相同的输入数据X,X可以分为 ( x 1 , x 2 , . . , x n ) (x_1,x_2,..,x_n) (x1​,x2​,..,xn​)。 而通过输入嵌入层(input embedding)&#xff0c…...

分类预测|基于粒子群优化径向基神经网络的数据分类预测Matlab程序PSO-RBF 多特征输入多类别输出 含基础RBF程序

分类预测|基于粒子群优化径向基神经网络的数据分类预测Matlab程序PSO-RBF 多特征输入多类别输出 含基础RBF程序 文章目录 一、基本原理1. 粒子群优化算法(PSO)2. 径向基神经网络(RBF)PSO-RBF模型流程总结 二、实验结果三、核心代码…...

【React】Vite 构建 React

项目搭建 vite 官网:Vite 跟着文档走即可,选择 react ,然后 ts swc。 着重说一下 package-lock.json 这个文件有两个作用: 锁版本号(保证项目在不同人手里安装的依赖都是相同的,解决版本冲突的问题&am…...

算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组

300. 最长递增子序列 1.dp定义:dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度 2.递推公式:if (nums[i] > nums[j]) dp[i] max(dp[i], dp[j] 1); 注意这里不是要dp[i] 与 dp[j] 1进行比较,而是我们要取dp[j] 1的最大值…...

【linux】一种基于虚拟串口的方式使两个应用通讯

在Linux系统中,两个应用之间通过串口(Serial Port)进行通信是一种常见的通信方式,特别是在嵌入式系统、工业自动化等领域。串口通信通常涉及到对串口设备的配置和读写操作。以下是一个基本的步骤指南,说明如何在Linux中…...

并行程序设计基础——并行I/O(3)

目录 一、多视口的并行文件并行读写 1、文件视口与指针 1.1 MPI_FILE_SET_VIEW 1.2 MPI_FILE_GET_VIEW 1.3 MPI_FILE_SEEK 1.4 MPI_FILE_GET_POSTION 1.5 MPI_FILE_GET_BYTE_OFFSET 2、阻塞方式的视口读写 2.1 MPI_FILE_READ 2.2 MPI_FILE_WRITE 2.3 MPI_FILE_READ_…...

性能测试-jmeter脚本录制(十五)

一、jmeter脚本录制(不推荐)简介: 二、jmeter脚本录制步骤 1、添加代理服务器和线程组 2、配置http代理服务器的端口和目标线程组 3修改本机浏览器代理 4、点击启动 5、每次操作页面前,修改提示文字...

关系型数据库 - MySQL I

MySQL 数据库 MySQL 是一种关系型数据库。开源免费,并且方便扩展。在 Java 开发中常用于保存和管理数据。默认端口号 3306。 MySQL 数据库主要分为 Server 和存储引擎两部分,现在最常用的存储引擎是 InnoDB。 指令执行过程 MySQL 数据库接收到用户指令…...

解锁AI写作新境界:5款工具让你的论文创作事半功倍

在这个数字化飞速发展的时代,人工智能(AI)已经不再是科幻小说中的幻想,而是实实在在地融入了我们的日常生活。特别是在学术领域,AI技术的介入正在改变传统的论文写作方式。你是否还在为撰写论文而熬夜苦战?…...

一文读懂多组学联合分析产品在医学领域的应用

疾病的发生和发展通常涉及多个层面的生物学过程,包括基因表达、蛋白质功能、代谢物变化等。传统的单一组学研究只能提供某一层面的信息,而多组学关联分析能够综合多个层面的数据,提供更全面、更深入的疾病理解。例如,通过分析患者…...

js react 笔记 2

起因, 目的: 记录一些 js, react, css 1. 生成一个随机的 uuid // 需要先安装 crypto 模块 const { randomUUID } require(crypto);const uuid randomUUID(); console.log(uuid); // 输出类似 9b1deb4d-3b7d-4bad-9bdd-2b0d7b3dcb6d 2. 使用 props, 传递参数…...

快速使用react 全局状态管理工具--redux

redux Redux 是 JavaScript 应用中管理应用状态的工具,特别适用于复杂的、需要共享状态的中大型应用。Redux 的核心思想是将应用的所有状态存储在一个单一的、不可变的状态树(state tree)中,状态只能通过触发特定的 action 来更新…...

活动系统开发之采用设计模式与非设计模式的区别-非设计模式

1、父类Base.php <?php /*** 初始化控制器* User: Administrator* Date: 2022/9/26* Time: 18:00*/ declare (strict_types 1); namespace app\controller; use app\model\common\Token; use app\BaseController; use app\BaseError; use OpenSSL\Encrypt; use app\model…...

JVM面试(六)垃圾收集器

目录 概述STW收集器的并发和并行 Serial收集器ParNew收集器Parallel Scavenge收集器Serial Old收集器Parallel Old收集器CMS收集器Garbage First&#xff08;G1&#xff09;收集器 概述 上一章我们分析了垃圾收集算法&#xff0c;那这一章我们来认识一下这些垃圾收集器是如何运…...

固态硬盘装系统有必要分区吗?

前言 现在的新电脑有哪一台是不使用固态硬盘的呢&#xff1f;这个好像很少很少了…… 有个朋友买了一台新的笔记本电脑&#xff0c;开机之后&#xff0c;电脑只有一个分区&#xff08;系统C盘500GB&#xff09;。这时候她想要给笔记本分区…… 这个真的有必要分区吗&#xf…...

网络安全架构师

网络安全架构师负责构建全面的安全框架&#xff0c;以保护组织的数字资产免受侵害&#xff0c;确保组织在数字化转型的同时维持强大的安全防护。 摩根大通的网络安全运营副总裁兼安全架构总监Lester Nichols强调&#xff0c;成为网络安全架构师对现代企业至关重要&#xff0c;…...

如何本地部署Ganache并使用内网穿透配置公网地址远程连接测试网络

目录 前言 1. 安装Ganache 2. 安装cpolar 3. 创建公网地址 4. 公网访问连接 5. 固定公网地址 作者简介&#xff1a; 懒大王敲代码&#xff0c;计算机专业应届生 今天给大家聊聊如何本地部署Ganache并使用内网穿透配置公网地址远程连接测试网络&#xff0c;欢迎大家点赞 &a…...

算法岗/开发岗 实况

深信服算法岗一面 第一题 树的直径有哪些解法 两次dfs和树形dp&#xff0c;讲了一下树形dp的思路 因为我的简历写的比较少&#xff0c;所以面试官问我一些个人信息和擅长哪方面。 我说&#xff1a;ACM大一下打到大三&#xff0c;然后去考研。dp写的多一点&#xff0c;还有思维…...

Nginx跨域运行案例:云台控制http请求,通过 http server 代理转发功能,实现跨域运行。(基于大华摄像头WEB无插件开发包)

文章目录 引言I 跨域运行案例开发资源测试/生产环境,Nginx代理转发,实现跨域运行本机开发运行II nginx的location指令Nginx配置中, 获取自定义请求header头Nginx 配置中,获取URL参数引言 背景:全景监控 需求:感知站点由于云台相关操作为 http 请求,http 请求受浏览器…...

【数据分析预备】Pandas

Pandas 构建在NumPy之上&#xff0c;继承了NumPy高性能的数组计算功能&#xff0c;同时提供更多复杂精细的数据处理功能 安装 pip install pandas导入 import pandas as pdSeries 键值对列表 # 创建Series s1 pd.Series([5, 17, 3, 26, 31]) s10 5 1 17 2 3 3 26 4 31 dt…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...

PydanticAI快速入门示例

参考链接&#xff1a;https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...