当前位置: 首页 > news >正文

数据倾斜问题

数据倾斜:主要就是在处理MR任务的时候,某个reduce的数据处理量比另外一些的reduce的数据量要大得多,其他reduce几乎不处理,这样的现象就是数据倾斜。

官方解释:数据倾斜指的是在数据处理过程中,由于某些键的分布极度不均匀,导致某些节点处理的数据量显著多于其他节点。‌这种情况会引发性能瓶颈,阻碍任务的并行执行,增加作业的整体执行时间。在Hadoop的MapReduce作业中,数据倾斜尤为明显,因为它会导致某些Reduce任务处理的数据量远大于其他任务,从而造成集群整体处理效率低下的问题。

这里比如有一个文本数据,里面内容全是:hadoop, hadoop, hadoop,hadoop ....,假设有800万条数据,这样更容易显示数据倾斜的效果,里面都是同样的单词,默认的hash取余分区的方法,明显不太适合,所以我们要自定义分区,重写分区方法。以及设置多个reduce,这里我设置为3,主要就是对数据倾斜的key进行一个增加后缀的方法,以及在Map阶段就增加后缀,实现过程是将每个hadoop都进行增加后缀,刚开始会全部默认存放到第一个分区里(0分区),然后写到分区后,自定义分区方法SkewPartitioner就会对里面的数据进行分析,如果后缀是1就分到1区里面,一共就0、1、2三个分区,以此来解决数据倾斜的问题。

注意:在Job端进行自定义分区器的设置:job,setPartitionerClass(SkewPartitioner.class)

具体代码如下:

package com.shujia.mr;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class Demo05SkewDataMR {public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {String line = value.toString();// 将每一行数据按照逗号/空格进行切分for (String word : line.split("[,\\s]")) {// 使用context.write将数据发送到下游// 将每个单词变成 单词,1 形式// 对数据倾斜的Key加上随机后缀if ("hadoop".equals(word)) {// 随机生成 0 1 2int prefix = (int) (Math.random() * 3);context.write(new Text(word + "_" + prefix), new IntWritable(1));} else {context.write(new Text(word), new IntWritable(1));}}}}public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {// 统计每个单词的数量int cnt = 0;for (IntWritable value : values) {cnt = cnt + value.get();}context.write(key, new IntWritable(cnt));}}// Driver端:组装(调度)及配置任务// 可以通过args接收参数// 本任务接收两个参数:输入路径、输出路径public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Configuration conf = new Configuration();// 创建JobJob job = Job.getInstance(conf);// 配置任务job.setJobName("Demo05SkewDataMR");job.setJarByClass(Demo05SkewDataMR.class);// 设置自定义分区器job.setPartitionerClass(SkewPartitioner.class);// 手动设置Reduce的数量// 最终输出到HDFS的文件数量等于Reduce的数量job.setNumReduceTasks(3);// 配置Map端job.setMapperClass(MyMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 配置Reduce端job.setReducerClass(MyReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);// 验证args的长度if (args.length != 2) {System.out.println("请传入输入输出目录!");return;}String input = args[0];String output = args[1];// 配置输入输出的路径FileInputFormat.addInputPath(job, new Path(input));Path ouputPath = new Path(output);// 通过FileSystem来实现覆盖写入FileSystem fs = FileSystem.get(conf);if (fs.exists(ouputPath)) {fs.delete(ouputPath, true);}// 该目录不能存在,会自动创建,如果已存在则会直接报错FileOutputFormat.setOutputPath(job, ouputPath);// 启动任务// 等待任务的完成job.waitForCompletion(true);}
}// 自定义分区:在Map阶段给key加上随机后缀,基于后缀返回不同的分区编号
class SkewPartitioner extends Partitioner<Text, IntWritable> {@Overridepublic int getPartition(Text text, IntWritable intWritable, int numPartitions) {String key = text.toString();int partitions = 0;// 只对数据倾斜的key做特殊处理if ("hadoop".equals(key.split("_")[0])) {switch (key) {
//                case "hadoop_0":
//                    partitions = 0;
//                    break;case "hadoop_1":partitions = 1;break;case "hadoop_2":partitions = 2;break;}} else {// 正常的key还是按照默认的Hash取余进行分区partitions = (key.hashCode() & Integer.MAX_VALUE) % numPartitions;}return partitions;}
}

相关文章:

数据倾斜问题

数据倾斜&#xff1a;主要就是在处理MR任务的时候&#xff0c;某个reduce的数据处理量比另外一些的reduce的数据量要大得多&#xff0c;其他reduce几乎不处理&#xff0c;这样的现象就是数据倾斜。 官方解释&#xff1a;数据倾斜指的是在数据处理过程中&#xff0c;由于某些键…...

大龄焦虑?老码农逆袭之路:拥抱大模型时代,焕发职业生涯新活力!

其实我很早就对大龄程序员这个话题感到焦虑&#xff0c;担心自己35岁之后会面临失业&#xff0c;有时和亲戚朋友聊天时&#xff0c;也会经常拿这个出来调侃。现在身边已经有很多35岁左右的同事&#xff0c;自己过两年也会步入35岁的行列&#xff0c;反倒多了一份淡定和从容。 …...

Vue 页面反复刷新常见问题及解决方案

Vue 页面反复刷新常见问题及解决方案 引言 Vue.js 是一个流行的前端框架&#xff0c;旨在通过其响应式的数据绑定和组件化的开发模式简化开发。然而&#xff0c;在开发 Vue.js 应用时&#xff0c;页面反复刷新的问题可能会对用户体验和开发效率产生负面影响。本文将深入探讨 …...

Windows上指定盘符-安装WSL虚拟机(机械硬盘)

参考来自于教程1&#xff1a;史上最全的WSL安装教程 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/386590591#%E4%B8%80%E3%80%81%E5%AE%89%E8%A3%85WSL2.0 教程2&#xff1a;Windows 10: 将 WSL Linux 实例安装到 D 盘&#xff0c;做成移动硬盘绿色版也不在话下 - 知乎 (z…...

ffmpeg实现视频的合成与分割

视频合成与分割程序使用 作者开发了一款软件&#xff0c;可以实现对视频的合成和分割&#xff0c;界面如下&#xff1a; 播放时&#xff0c;可以选择多个视频源&#xff1b;在选中“保存视频”情况下&#xff0c;会将多个视频源合成一个视频。如果只取一个视频源中一段视频…...

团体标准的十大优势

一、团体标准是什么 团体标准是指由社会团体&#xff08;行业协会、联合会、企业联盟等&#xff09;按照自己确立的制定程序&#xff0c;自主制定、发布、采纳&#xff0c;并由社会自愿采用的标准。简单的说&#xff0c;就是社会团体为了满足市场和创新需要&#xff0c;协调相…...

java spring boot 动态添加 cron(表达式)任务、动态添加停止单个cron任务

java spring boot 动态添加 cron&#xff08;表达式&#xff09;任务、动态添加停止单个cron任务 添加对应的maven <dependency><groupId>org.quartz-scheduler</groupId><artifactId>quartz</artifactId><version>2.3.0</version…...

sqlgun靶场漏洞挖掘

1.xss漏洞 搜索框输入以下代码&#xff0c;验证是否存在xss漏洞 <script>alert(1)</script> OK了&#xff0c;存在xss漏洞 2.SQL注入 经过测试&#xff0c;输入框存在SQL注入漏洞 查询数据库名 查询管理员账号密码 此处密码为MD5加密&#xff0c;解码内容如下 找…...

好用的 Markdown 编辑器组件

ByteMD bytedance/bytemd: ByteMD v1 repository (github.com) 这里由于我的项目是 Next&#xff0c;所以安装 bytemd/react&#xff0c; 阅读官方文档&#xff0c;执行命令来安装编辑器主体、以及 gfm&#xff08;表格支持&#xff09;插件、highlight 代码高亮插件&#xf…...

uniapp vite3 require导入commonJS 的js文件方法

vite3 导入commonJS 方式导出 在Vite 3中&#xff0c;你可以通过配置vite.config.js来实现导入CommonJS&#xff08;CJS&#xff09;风格的模块。Vite 默认支持ES模块导入&#xff0c;但如果你需要导入CJS模块&#xff0c;可以使用特定的插件&#xff0c;比如originjs/vite-pl…...

通义灵码用户说:“人工编写测试用例需要数十分钟,通义灵码以毫秒级的速度生成测试代码,且准确率和覆盖率都令人满意”

通过一篇文章&#xff0c;详细跟大家分享一下我在使用通义灵码过程中的感受。 一、定义 通义灵码&#xff0c;是一个智能编码助手&#xff0c;它基于通义大模型&#xff0c;提供代码智能生成、研发智能问答能力。 在体验过程中有任何问题均可点击下面的连接前往了解和学习。 …...

MySQL中的约束

约束概述 1.1 为什么需要约束 数据完整性&#xff08;Data Integrity&#xff09;是指数据的精确性&#xff08;Accuracy&#xff09;和可靠性&#xff08;Reliability&#xff09;。它是防止数据库中存在不符合语义规定的数据和防止因错误信息的输入输出造成无效操作或错误信…...

Leetcode 寻找重复数

可以使用 位运算 来解决这道题目。使用位运算的一个核心思想是基于数字的二进制表示&#xff0c;统计每一位上 1 的出现次数&#xff0c;并与期望的出现次数做比较。通过这种方法&#xff0c;可以推断出哪个数字重复。 class Solution { public:int findDuplicate(vector<i…...

大一新生以此篇开启你的算法之路

各位大一计算机萌新们&#xff0c;你们好&#xff0c;本篇博客会带领大家进行算法入门&#xff0c;给各位大一萌新答疑解惑。博客文章略长&#xff0c;可根据自己的需要观看&#xff0c;在博客中会有给大一萌新问题的解答&#xff0c;请不要错过。 入门简介&#xff1a; 算法…...

【AI大模型】ChatGPT模型原理介绍(上)

目录 &#x1f354; 什么是ChatGPT&#xff1f; &#x1f354; GPT-1介绍 2.1 GPT-1模型架构 2.2 GPT-1训练过程 2.2.1 无监督的预训练语言模型 2.2.2 有监督的下游任务fine-tunning 2.2.3 整体训练过程架构图 2.3 GPT-1数据集 2.4 GPT-1模型的特点 2.5 GPT-1模型总结…...

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达深度摄像机的仿真小车&#xff0c;并使用通过跨平台的方式进行ROS2和UE5仿真的通讯&#xff0c;达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础&#xff0c;Nav2相关的学习教程可以参考本人的其他博…...

C++竞赛初阶L1-15-第六单元-多维数组(34~35课)557: T456507 图像旋转

题目内容 输入一个 n 行 m 列的黑白图像&#xff0c;将它顺时针旋转 90 度后输出。 输入格式 第一行包含两个整数 n 和 m&#xff0c;表示图像包含像素点的行数和列数。1≤n≤100&#xff0c;1≤m≤100。 接下来 n 行&#xff0c;每行 m 个整数&#xff0c;表示图像的每个像…...

无线领夹麦克风哪个牌子好?西圣、罗德、猛犸领夹麦克风深度评测

​如今短视频和直播行业蓬勃发展&#xff0c;无线领夹麦克风成为了许多创作者不可或缺的工具。然而&#xff0c;市场上的无线领夹麦克风品牌众多、质量参差不齐&#xff0c;为了帮助大家挑选到满意的产品&#xff0c;我作为数码测评博主&#xff0c;对无线领夹麦克风市场进行了…...

React Native 0.76,New Architecture 将成为默认模式,全新的 RN 来了

关于 React Native 的 New Architecture 概念&#xff0c;最早应该是从 2018 年 RN 团队决定重写大量底层实现开始&#xff0c;因为那时候 React Native 面临各种结构问题和性能瓶颈&#xff0c;最终迫使 RN 团队开始进行重构。 而从 React Native 0.68 开始&#xff0c;New A…...

Java并发:互斥锁,读写锁,Condition,StampedLock

3&#xff0c;Lock与Condition 3.1&#xff0c;互斥锁 3.1.1&#xff0c;可重入锁 锁的可重入性&#xff08;Reentrant Locking&#xff09;是指在同一个线程中&#xff0c;已经获取锁的线程可以再次获取该锁而不会导致死锁。这种特性允许线程在持有锁的情况下&#xff0c;可…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲&#xff0c;何谓六部曲呢&#xff1f; 其实啊&#xff0c;数据分析没那么难&#xff0c;只要掌握了下面这六个步骤&#xff0c;也就是数据分析六部曲&#xff0c;就算你是个啥都不懂的小白&#xff0c;也能慢慢上手做数据分析啦。 第一…...

RabbitMQ 各类交换机

为什么要用交换机&#xff1f; 交换机用来路由消息。如果直发队列&#xff0c;这个消息就被处理消失了&#xff0c;那别的队列也需要这个消息怎么办&#xff1f;那就要用到交换机 交换机类型 1&#xff0c;fanout&#xff1a;广播 特点 广播所有消息​​&#xff1a;将消息…...

初级程序员入门指南

初级程序员入门指南 在数字化浪潮中&#xff0c;编程已然成为极具价值的技能。对于渴望踏入程序员行列的新手而言&#xff0c;明晰入门路径与必备知识是开启征程的关键。本文将为初级程序员提供全面的入门指引。 一、明确学习方向 &#xff08;一&#xff09;编程语言抉择 编…...

多模态大语言模型arxiv论文略读(110)

CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving ➡️ 论文标题&#xff1a;CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving ➡️ 论文作者&#xff1a;Hidehisa Arai, Keita Miwa, Kento Sasaki, Yu Yamaguchi, …...

分布式计算框架学习笔记

一、&#x1f310; 为什么需要分布式计算框架&#xff1f; 资源受限&#xff1a;单台机器 CPU/GPU 内存有限。 任务复杂&#xff1a;模型训练、数据处理、仿真并发等任务耗时严重。 并行优化&#xff1a;通过任务拆分和并行执行提升效率。 可扩展部署&#xff1a;适配从本地…...