CLIP官方github代码详解
系列文章目录
文章目录
- 系列文章目录
- 一、Usage
- 1、conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
- 2、代码
- 3、
- 二、
- 1、
- 2、
- 3、
- 三、
- 1、
- 2、
- 3、
- 四、
- 1、
- 2、
- 3、
- 五、
- 1、
- 2、
- 3、
- 六、
- 1、
- 2、
- 3、
- 七、
- 1、
- 2、
- 3、
- 八、
- 1、
- 2、
- 3、
一、Usage
1、conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
conda: 这是一个包管理工具,用于管理 Python 环境和安装软件包。
install: 这是一个命令,表示要安装软件包。
–yes: 这个选项表示在安装过程中自动确认所有提示,避免手动确认。
-c pytorch: 这个选项指定了要从名为 pytorch 的频道(repository)中安装软件包。Conda 允许从不同的频道获取软件包。
pytorch=1.7.1: 这是要安装的具体软件包及其版本。在这里,表示要安装 PyTorch 的 1.7.1 版本。
torchvision: 这是另一个要安装的软件包,通常与 PyTorch 一起使用,提供计算机视觉相关的工具和数据集。
cudatoolkit=11.0: 这是要安装的 CUDA 工具包的版本,CUDA 是用于 GPU 加速计算的工具。这里指定为 11.0 版本。
2、代码
import torch # 导入 PyTorch 库,用于深度学习相关操作
import clip # 导入 CLIP 库,用于处理图像和文本的模型
from PIL import Image # 从 PIL 库导入 Image 模块,用于图像处理# 检查是否有可用的 GPU,如果有则使用 CUDA,否则使用 CPU
device = "cuda" if torch.cuda.is_available() else "cpu"# 加载 CLIP 模型和预处理函数,使用 ViT-B/32 结构,指定计算设备
model, preprocess = clip.load("ViT-B/32", device=device)# 打开指定的图像文件,进行预处理,并增加一个维度(batch size),然后移动到指定设备
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)# 对给定的文本进行标记化处理,转换为模型可以理解的格式,并移动到指定设备
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)# 在不计算梯度的情况下进行推理,节省内存和计算资源
with torch.no_grad():# 使用模型编码图像,得到图像特征image_features = model.encode_image(image)# 使用模型编码文本,得到文本特征text_features = model.encode_text(text)# 计算图像和文本之间的对比 logitslogits_per_image, logits_per_text = model(image, text)# 对 logits 进行 softmax 操作,得到每个文本标签的概率分布probs = logits_per_image.softmax(dim=-1).cpu().numpy()# 打印每个标签的概率,显示模型对每个文本的预测概率
print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
3、
二、
1、
2、
3、
三、
1、
2、
3、
四、
1、
2、
3、
五、
1、
2、
3、
六、
1、
2、
3、
七、
1、
2、
3、
八、
1、
2、
3、
相关文章:
CLIP官方github代码详解
系列文章目录 文章目录 系列文章目录一、Usage1、conda install --yes -c pytorch pytorch1.7.1 torchvision cudatoolkit11.02、代码3、 二、1、2、3、 三、1、2、3、 四、1、2、3、 五、1、2、3、 六、1、2、3、 七、1、2、3、 八、1、2、3、 一、Usage 1、conda install --…...
ElementUI 布局——行与列的灵活运用
ElementUI 布局——行与列的灵活运用 一 . 使用 Layout 组件1.1 注册路由1.2 使用 Layout 组件 二 . 行属性2.1 栅格的间隔2.2 自定义元素标签 三 . 列属性3.1 列的偏移3.2 列的移动 在现代网页设计中,布局是构建用户界面的基石。Element UI 框架通过其强大的 <e…...
Docker快速部署Apache Guacamole
Docker快速部署Apache Guacamole ,实现远程访问 git clone "https://github.com/boschkundendienst/guacamole-docker-compose.git" cd guacamole-docker-compose ./prepare.sh docker-compose up -dhttps://IP地址:8443/ 用户名:guacadmin 密码:guacadmin docker …...
C++学习笔记----7、使用类与对象获得高性能(一)---- 书写类(1)
1、表格处理程序示例 表格处理程序是一个二维的“细胞”网格,每个格子包含了一个数字或者字符串。专业的表格处理程序比如微软的Excel提供了执行数学运算的能力,比如计算格子中的值的和。表格处理程序示例无意挑战微软的市场地位,但是对于演示…...
es6中set和map的区别
在ES6(ECMAScript 2015)中,Set 和 Map 是两种新的集合类型,它们提供了更高级的数据结构来存储唯一值或键值对集合。尽管它们在功能上有些相似,但它们在用途和内部机制上存在一些关键区别。 1. 基本概念 Set࿱…...
高级实时通信:基于 Python 的 WebSocket 实现与异步推送解决方案
高级实时通信:基于 Python 的 WebSocket 实现与异步推送解决方案 目录 🟢 WebSocket 协议概述🔵 在 FastAPI 中实现 WebSocket🟣 Django Channels 实现异步实时通信🔴 使用 Redis 实现实时推送 🟢 1. WebS…...
大二上学期详细学习计划
本学习完成目标: 项目: 书籍:《mysql必知必会》《java核心技术卷》(暂时)加强JavaSE的学习,掌握Java核心Mysqlsql(把牛客上的那50道sql语句题写完)gitmaven完成springboot项目&…...
Kafka【十四】生产者发送消息时的消息分区策略
【1】分区策略 Kafka中Topic是对数据逻辑上的分类,而Partition才是数据真正存储的物理位置。所以在生产数据时,如果只是指定Topic的名称,其实Kafka是不知道将数据发送到哪一个Broker节点的。我们可以在构建数据传递Topic参数的同时ÿ…...
SQL优化:执行计划详细分析
视频讲解:SQL优化:SQL执行计划详细分析_哔哩哔哩_bilibili 1.1 执行计划详解 id select_type table partitions type possible_keys key key_len ref rows filtered Extra 1.1.1 ID 【概…...
Android Studio -> Android Studio 获取release模式和debug模式的APK
Android Studio上鼠标修改构建类型 Release版本 激活路径:More tool windows->Build Variants->Active Build Variant->releaseAPK路径:Project\app\build\intermediates\apk\app-release.apk Debug版本 激活路径:More tool w…...
基于 SpringBoot 的实习管理系统
专业团队,咨询送免费开题报告,大家可以来留言。 摘 要 随着信息化时代的到来,管理系统都趋向于智能化、系统化,实习管理也不例外,但目前国内仍都使用人工管理,市场规模越来越大,同时信息量也越…...
vmware workstation 17 linux版
链接: https://pan.baidu.com/s/1F3kpNEi_2GZW0FHUO-8p-g?pwd6666 提取码: 6666 1 先安装虚拟机 不管什么错误 先安装vmware workstation 17 2 编译 覆盖安装vmware-host-modules-workstation-17.5.1 只需这样就可以 # sudo apt install dkms build-essential bc iw…...
Windows环境本地部署Oracle 19c及卸载实操手册
前言: 一直在做其他测试,貌似都忘了Windows环境oracle 19c的部署,这是一个很早很早的安装记录了,放上来做个备录给到大家参考。 Oracle 19c:进一步增强了自动化功能,并提供了更好的性能和安全性。这个版本在自动化、性能和安全性方面进行了重大改进,以满足现代企业对数…...
MapStruct介绍
一、MapStruct 1.1何为MapStruct 要说这个东西,其实和我们刚刚讲到的Lombok相类似。其是由我们的源代码加上MapStruct经过编译后得到.class文件,文件中自动补全了代码。那么补全了什么代码?实现了什么功能? MapStruct的产生&…...
35天学习小结
距离上次纪念日,已经过去了35天咯 算算也有5周了,在这一个月里,收获的也挺多,在这个过程中认识的大佬也是越来越多了hh 学到的东西,其实也没有很多,这个暑假多多少少还是有遗憾的~ 第一周 学习了一些有…...
【iOS】UIViewController的生命周期
UIViewController的生命周期 文章目录 UIViewController的生命周期前言UIViewController的一个结构UIViewController的函数的执行顺序运行代码viewWillAppear && viewDidAppear多个视图控制器跳转时的生命周期pushpresent 小结 前言 之前对于有关于UIViewControlller的…...
ELK在Linux服务器下使用docker快速部署(超详细)
ELK是什么? 首先说说什么是ELK ELK 是一个开源的日志管理和分析平台,由三个主要组件组成: Elasticsearch:一个分布式搜索和分析引擎,能够快速存储、搜索和分析大量数据。它是 ELK 堆栈的核心,负责数据的…...
unity导入半透明webm + AE合成半透明视频
有些webm的文件导入unity后无法正常播报,踩坑好久才知道需要webm中的:VP8 标准 现在手上有几条mp4双通道的视频,当然unity中有插件是可以支持这种视频的,为了省事和代码洁癖,毅然决然要webm走到黑。 mp4导入AE合成半透…...
力扣: 四数相加II
文章目录 需求代码结尾 需求 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 < i, j, k, l < n nums1[i] nums2[j] nums3[k] nums4[l] 0 示例 1: 输入…...
径向基函数神经网络RBFNN案例实操
简介 (来自ChatGPT的介绍,如有更正建议请指出) 径向基函数神经网络(Radial Basis Function Neural Network, RBFNN)是一种特殊的前馈神经网络,其结构和特点与其他常见的神经网络有所不同,主要表现在以下几个方面: 网络结构三层结构:RBF神经网络通常由三层组成:输入层…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
