当前位置: 首页 > news >正文

matlab处理函数3

1. 直方图均衡化的 Matlab 实现

1.1 imhist 函数

功能:计算和显示数字数字图像的色彩直方图
格式:imhist(I,n)
        imhist(X,map)
说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色数字数字图像 X 的直方图,map为调色板。用stem(x,counts) 同样可以显示直方图。

1.2 imcontour 函数

功能:显示数字数字图像的等灰度值图
格式:imcontour(I,n),imcontour(I,v)
说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。

1.3 imadjust 函数

功能:通过直方图变换调整对比度
格式:J=imadjust(I,[low high],[bottomtop],gamma)
        newmap=imadjust(map,[low high],[bottomtop],gamma)
说明:J=imadjust(I,[low high],[bottomtop],gamma) 其中,gamma 为校正量r,[lowhigh] 为原数字数字图像中要变换的灰度范围,[bottom top]
指定了变换后的灰度范围;newmap=imadjust(map,[lowhigh],[bottom top],gamma) 调整索引色数字数字图像的调色板 map 。此时若 [low high] 和
[bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。

1.4 histeq 函数

功能:直方图均衡化
格式:J=histeq(I,hgram)
        J=histeq(I,n)
        [J,T]=histeq(I,...)
        newmap=histeq(X,map,hgram)
        newmap=histeq(X,map)
        [new,T]=histeq(X,...)
说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素
都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...)返回从能将数字数字图像 I 的灰度直方图变换成
数字数字图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色数字数字图像调色板的直方图均衡。
 

2. 噪声及其噪声的 Matlab 实现

        imnoise 函数
格式:J=imnoise(I,type)
        J=imnoise(I,type,parameter)
说明:J=imnoise(I,type) 返回对数字数字图像 I 添加典型噪声后的有噪数字数字图像 J ,参数type 和 parameter 用于确定噪声的类型和相应的参数。

3. 数字数字图像滤波的 Matlab 实现

3.1 conv2 函数

功能:计算二维卷积
格式:C=conv2(A,B)
        C=conv2(Hcol,Hrow,A)
        C=conv2(...,'shape')
说明:对于 C=conv2(A,B) ,conv2 的算矩阵A 和 B 的卷积,若[Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];
C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2
返回二维卷积结果部分,参数 shape 可取值如下:
        》full为缺省值,返回二维卷积的全部结果;
        》same返回二维卷积结果中与 A 大小相同的中间部分;
        valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]。
 

3.2 conv 函数

功能:计算多维卷积
格式:与 conv2 函数相同

3.3 filter2函数

功能:计算二维线型数字滤波,它与函数 fspecial 连用
格式:Y=filter2(B,X)
        Y=filter2(B,X,'shape')
说明:对于 Y=filter2(B,X) ,filter2 使用矩阵B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大
小与 X 一样;对于Y=filter2(B,X,'shape') ,filter2返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下

        》full返回二维相关的全部结果,size(Y)>size(X);
        》same返回二维互相关结果的中间部分,Y 与X 大小相同;
        》valid返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X) 。

3.4 fspecial 函数

功能:产生预定义滤波器
格式:H=fspecial(type)
        H=fspecial('gaussian',n,sigma)        高斯低通滤波器
        H=fspecial('sobel')                        Sobel 水平边缘增强滤波器
        H=fspecial('prewitt')                     Prewitt 水平边缘增强滤波器
        H=fspecial('laplacian',alpha)            近似二维拉普拉斯运算滤波器
        H=fspecial('log',n,sigma)                高斯拉普拉斯(LoG)运算滤波器
        H=fspecial('average',n)                  均值滤波器
        H=fspecial('unsharp',alpha)            模糊对比增强滤波器
说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的H 常与其它滤波器搭配使用。
 

4. 彩色增强的 Matlab 实现

4.1 imfilter函数

功能:真彩色增强
格式:B=imfilter(A,h)
说明:将原始数字数字图像 A 按指定的滤波器 h 进行滤波增强处理,增强后的数字数字图像 B 与A 的尺寸和类型相同

相关文章:

matlab处理函数3

1. 直方图均衡化的 Matlab 实现 1.1 imhist 函数 功能&#xff1a;计算和显示数字数字图像的色彩直方图 格式&#xff1a;imhist(I,n) imhist(X,map) 说明&#xff1a;imhist(I,n) 其中&#xff0c;n 为指定的灰度级数目&#xff0c;缺省值为256&#xff1b;imhist(X…...

跨系统环境下LabVIEW程序稳定运行

在LabVIEW开发中&#xff0c;不同电脑的配置和操作系统&#xff08;如Win11与Win7&#xff09;可能对程序的稳定运行产生影响。为了确保程序在不同平台上都能正常且稳定运行&#xff0c;需要从兼容性、驱动、以及性能优化等多个方面入手。本文将详细介绍如何在不同系统环境下&a…...

开源项目低代码表单FormCreate中通过接口加载远程数据选项

在开源项目低代码表单 FormCreate 中&#xff0c;fetch 属性提供了强大的功能&#xff0c;允许从远程 API 加载数据并将其应用到表单组件中。通过灵活的配置&#xff0c;fetch 可以在多种场景下发挥作用&#xff0c;从简单的选项加载到复杂的动态数据处理。 源码地址: Github …...

k8s的搭建

一、安装环境 准备三台主机&#xff1a; 192.168.1.66 k8s-master 192.168.1.77 k8s-node01 192.168.1.88 k8s-node02 网段&#xff1a; Pod ⽹段 172.16.0.0/16 Service ⽹段 10.96.0.0/16 注&#xff1a;宿主机⽹段、Pod…...

人工智能与机器学习原理精解【19】

文章目录 马尔科夫链概述定义与性质分类应用领域收敛性马尔科夫链蒙特卡洛方法 马尔科夫链原理详解一、定义二、特性三、数学描述四、类型五、应用六、示例定义性质转移概率矩阵应用举例结论 马尔科夫链在语音识别和语音合成中的应用一、马尔科夫链在语音识别中的应用1. 基本概…...

DingoDB:多模态向量数据库的实践与应用

DingoDB&#xff1a;多模态向量数据库的实践与应用 1. 引言 在当今数据驱动的时代&#xff0c;高效处理和分析大规模、多样化的数据变得至关重要。DingoDB作为一个分布式多模态向量数据库&#xff0c;为我们提供了一个强大的解决方案。本文将深入探讨DingoDB的特性、安装过程…...

03.01、三合一

03.01、[简单] 三合一 1、题目描述 三合一。描述如何只用一个数组来实现三个栈。 你应该实现push(stackNum, value)、pop(stackNum)、isEmpty(stackNum)、peek(stackNum)方法。stackNum表示栈下标&#xff0c;value表示压入的值。 构造函数会传入一个stackSize参数&#xf…...

github上clone代码过程

从 GitHub 上拉取代码的过程非常简单&#xff0c;一般通过 git clone 命令来完成。以下是详细步骤&#xff1a; 下载git工具 要下载并安装 Git&#xff0c;你可以根据你的操作系统来选择相应的步骤。以下是如何在不同操作系统上安装 Git 的详细说明&#xff1a; 1. 在 Windo…...

ChatGLM3模型搭建教程

一、介绍 ChatGLM3 是智谱 AI 和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型&#xff0c;在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上&#xff0c;ChatGLM3-6B 引入了如下特性&#xff1a; 更强大的基础模型…...

多层建筑能源参数化模型和城市冠层模型的区别

多层建筑能源参数化&#xff08;Multi-layer Building Energy Parameterization, BEP&#xff09;模型和城市冠层模型&#xff08;Urban Canopy Model, UCM&#xff09;都是用于模拟城市环境中能量交换和微气候的数值模型&#xff0c;但它们的侧重点和应用场景有所不同。以下是…...

27. Redis并发问题

1. 前言 对于一个在线运行的系统,如果需要修改数据库已有数据,需要先读取旧数据,再写入新数据。因为读数据和写数据不是原子操作,所以在高并发的场景下,关注的数据可能会修改失败,需要使用锁控制。 2. 分布式场景 2.1 分布式锁场景 面试官提问: 为什么要使用分布式锁?…...

JVM四种垃圾回收算法以及G1垃圾回收器(面试)

JVM 垃圾回收算法 标记清除算法&#xff1a;标记清除算法将垃圾回收分为两个阶段&#xff1a;标记阶段和清除阶段。 在标记阶段通过根节点&#xff0c;标记所有从根节点开始的对象。然后&#xff0c;在清除阶段&#xff0c;清除所有未被标记的对象 适用场合&#xff1a; 存活对…...

Python 数学建模——Vikor 多标准决策方法

文章目录 前言原理步骤代码实例 前言 Vikor 归根到底其实属于一种综合评价方法。说到综合评价方法&#xff0c;TOPSIS&#xff08;结合熵权法使用&#xff09;、灰色关联度分析、秩和比法等方法你应该耳熟能详。Vikor 未必比这些方法更出色&#xff0c;但是可以拓展我们的视野。…...

计算机网络八股总结

这里写目录标题 网络模型划分&#xff08;五层和七层&#xff09;及每一层的功能五层网络模型七层网络模型&#xff08;OSI模型&#xff09; 三次握手和四次挥手具体过程及原因三次握手四次挥手 TCP/IP协议组成UDP协议与TCP/IP协议的区别Http协议相关知识网络地址&#xff0c;子…...

AMD CMD UMD CommonJs ESM 的历史和区别

这几个东西都是用于定义模块规范的。有些资料会提及到这些概念&#xff0c;不理清楚非常容易困惑。 ESM&#xff08;ES Module&#xff09; 这个实际上我们是最熟悉的&#xff0c;就是ES6的模块功能。出的最晚&#xff0c;因为是官方出品&#xff0c;所以大势所趋&#xff0c…...

人工智能数据基础之微积分入门-学习篇

目录 导数概念常见导数和激活导数python代码绘制激活函数微分概念和法则、积分概念微积分切线切面代码生成案例链式求导法则反向传播算法(重要) 一、概念 二、常见导数及激活导数 常见激活函数及其导数公式&#xff1a; 在神经网络中&#xff0c;激活函数用于引入非线性因素&…...

【PSINS】ZUPT代码解析(PSINS_SINS_ZUPT)|MATLAB

这篇文章写关于PSINS_SINS_ZUPT的相关解析。【值得注意的是】:例程里面给的这个m文件的代码,并没有使用ZUPT的相关技术,只是一个速度观测的EKF 简述程序作用 主要作用是进行基于零速更新(ZUPT)的惯性导航系统(INS)仿真和滤波 什么是ZUPT ZUPT是Zero Velocity Update(…...

多态(上)【C++】

文章目录 多态的概念多态的实现多态产生的条件什么是虚函数&#xff1f;虚函数的重写和协变重写协变 析构函数的重写为什么有必要要让析构函数构成重写&#xff1f; 多态的概念 C中的多态是面向对象编程&#xff08;OOP&#xff09;的一个核心特性&#xff0c;指的是同一个接口…...

如何驱动一枚30年前的音源芯片,YMF288驱动手记 Part2

一些问题 在上一篇里面虽然策划了想要驱动YMF288所需要做的事情以及目标。但是&#xff0c;在板子打出来后&#xff0c;我在进一步的研究中&#xff0c;发现我犯了个错误&#xff0c;那就是YMF288并不是使用现在很多轻量化的嵌入式&#xff0c;比如ESP32常用的I2S协议的&#x…...

yarn webpack脚手架 react+ts搭建项目

安装 Yarn 首先&#xff0c;确保你已经安装了 Node.js 和 Yarn。如果还没有安装 Yarn&#xff0c;可以通过以下命令安装&#xff1a; npm install -g yarn创建项目 使用 create-react-app 脚手架创建一个带有 TypeScript 的项目&#xff0c;node更新到最新版&#xff0c;并指定…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

node.js的初步学习

那什么是node.js呢&#xff1f; 和JavaScript又是什么关系呢&#xff1f; node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说&#xff0c; 需要在node.js的环境上进行当JavaScript作为前端开发语言来说&#xff0c;需要在浏览器的环境上进行 Node.js 可…...