当前位置: 首页 > news >正文

【算法】常用的基础数论

作者:指针不指南吗
专栏:算法篇

🐾或许会很慢,但是不可以停下🐾

文章目录

  • 1.GCD&LCM
  • 2.判断素数(质数)
  • 3.分解质因子

1.GCD&LCM

最大公约数&最小共倍数

欧几里得算法——高效

//最大公约数
int gcd(int x,int y)
{return y?gcd(y,x%y):x;
}//最小公倍数
int lcm(int x,int y)
{return x*y/gcd(x,y);
}

2.判断素数(质数)

孪生素数法——高效

  • 分析过程如下

首先看一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;

证明:令x≥1,将大于等于5的自然数表示如下:
······ 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ······
可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不是素数,再除去6x本身,显然,素数要出现只可能出现在6x的相邻两侧。这里要注意的一点是,在6的倍数相邻两侧并不是一定就是质数

此时用一个循环判断质数,可以以6为单元快进,i+=6,加快判断速度。

原因是,假如要判定的数为n,则n必定是6x-1或6x+1的形式,对于循环中6i-1,6i,6i+1,6i+2,6i+3,6i+4,其中如果n能被 6i,6i+2,6i+4整除,则n至少得是一个偶数,但是6x-1或6x+1的形式明显是一个奇数,故不成立;另外,如果n能被6i+3整除,则n至少能被3整除,但是6x能被3整除,故6x-1或6x+1(即n)不可能被3整除,故不成立。

综上,循环中只需要考虑6i-1和6i+1的情况,即循环的步长可以定为6,每次判断循环变量k和k+2的情况即可

bool isprime(int n)
{if(n<=3)   //特判几个较小的数return n>1;if(n%6!=1&&n%6!=5)  //不在6的倍数的两侧,一定不是素数return 0;for(int i=5;i<=sqrt(n);i+=6)  //判断在6的倍数的两侧的数,是不是素数if(n%i==0||n%(i+2)==0)return 0;return 1;
}

3.分解质因子

直接看例题吧

  • 题目

    链接: AcWing 867. 分解质因数–解释+代码注释 - AcWing

    给定 n 个正整数 ai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。

    输入格式

    第一行包含整数 n。

    接下来 n 行,每行包含一个正整数 ai。

    输出格式

    对于每个正整数 ai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。

    每个正整数的质因数全部输出完毕后,输出一个空行。

    数据范围

    1≤n≤100,
    2≤ai≤2×10910^9109

    输入样例:

    2
    6
    8
    

    输出样例:

    2 1
    3 12 3
    
  • 分析

    • x 的质因子最多只包含一个大于 根号x 的质数。如果有两个,这两个因子的乘积就会大于 x,矛盾。
    • i 从 2 遍历到 根号x。 用 x / i,如果余数为 0,则 i 是一个质因子。
    • s 表示质因子 i 的指数,x /= i 为 0,则 s++, x = x / i 。
    • 最后检查是否有大于 根号x 的质因子,如果有,输出。
  • 代码实现

    #include<bits/stdc++.h>
    using namespace std;void divide(int x)
    {for (int i = 2; i <= x / i; i ++ )//i <= x / i:防止越界,速度大于 i < sqrt(x)if (x % i == 0)//i为底数{int s = 0;//s为指数while (x % i == 0) x /= i, s ++ ;cout << i << ' ' << s << endl;//输出}if (x > 1) cout << x << ' ' << 1 << endl;//如果x还有剩余,单独处理cout << endl;
    }int main()
    {int n;cin >> n;while (n -- ){int x;cin >> x;divide(x);}return 0;
    }
    

Alt

相关文章:

【算法】常用的基础数论

作者&#xff1a;指针不指南吗 专栏&#xff1a;算法篇 &#x1f43e;或许会很慢&#xff0c;但是不可以停下&#x1f43e; 文章目录1.GCD&LCM2.判断素数(质数)3.分解质因子1.GCD&LCM 最大公约数&最小共倍数 欧几里得算法——高效 //最大公约数 int gcd(int x,i…...

云原生场景下的容器网络隔离技术

云原生场景下的容器网络隔离技术 一、研究背景 随着云计算时代的到来&#xff0c;尤其是容器化技术的飞速发展&#xff0c;云原生作为云计算的未来阶段&#xff0c;其安全势必成为云安全的主要战场。从目前的云原生环境来看&#xff0c;云原生网络安全问题层出不穷&#xff0…...

用python绘制有向图

目录 添加边权重的有向图思路介绍代码实现效果图设置不同的样式节点和边的有向图思路介绍代码实现效果图下面的Python代码用于绘制有向图,其中使用了 networkx和 matplotlib.pyplot等库。 添加边权重的有向图 思路介绍 首先,创建了一个空的有向图像对象G,并添加了4个节点…...

Spring MongoDB 开发教程(一)—官方原版

MongoDB支持包含一系列功能&#xff1a;Spring配置支持基于Java的configuration类或Mongo驱动程序实例和副本集的XML命名空间。MongoTemplate帮助类&#xff0c;在执行常见的Mongo操作时提高生产力。包括文档和POJO之间的集成对象映射。将异常转换为Spring的可移植数据访问异常…...

数据结构——二叉搜索树

一、二叉搜索树概念 二叉搜索树又叫二叉排序树&#xff0c;它或是空树&#xff0c;或是具有以下性质的二叉树&#xff1a; &#xff08;1&#xff09;若它的左子树不为空&#xff0c;则左子树上的所有节点的值都小于根节点的值&#xff1b; &#xff08;2&#xff09;若它的…...

23年5月高项学习笔记3---项目管理概述

项目是创造独特的产品、服务或成果而进行的临时性的工作 独特&#xff1a;每个项目都不一样 可交付成果&#xff1a;某一过程&#xff0c;阶段或项目完成时形成的独特的并且可验证的产品、服务或成果。 临时的&#xff1a;明确的起点和终点、 -------- 项目集&#xff1a; 相…...

【组织架构】中国铁路成都局集团有限公司

0 参考 中国铁路成都局集团有限公司 1 公司介绍 中国铁路成都局集团有限公司&#xff0c;是中国国家铁路集团有限公司管理的18个铁路局集团有限公司之一&#xff0c;简称“成局”&#xff0c;地处中国西南&#xff0c;管辖范围辐射四川、贵州、重庆地区。管内地形复杂&#x…...

剧前爆米花--爪哇岛寻宝】java多线程案例——单例模式、阻塞队列及生产者消费者模型、定时器、线程池

作者&#xff1a;困了电视剧 专栏&#xff1a;《JavaEE初阶》 文章分布&#xff1a;这是关于java多线程案例的文章&#xff0c;进行了对单例模式、阻塞队列及生产者消费者模型、定时器和线程池的讲解&#xff0c;希望对你有所帮助&#xff01; 目录 单例模式 懒汉模式实现 饿…...

Guitar Pro8中文版更新说明及系统要求介绍

Guitar Pro吉他软件是初学作曲&#xff0c;特别是同时又初学吉他的朋友们的良师益友&#xff0c;是一款极佳的初级软件&#xff0c;是非实时作曲软件之中的一件佳作。Guitar Pro在吉他和弦、把位的显示、推算、查询、调用等方面&#xff0c;也异常方便、简洁、直观和浩瀚&#…...

【id:19】【20分】A. 三数论大小(引用)

题目描述 输入三个整数&#xff0c;然后按照从大到小的顺序输出数值。 要求&#xff1a;定义一个函数&#xff0c;无返回值&#xff0c;函数参数是三个整数参数的引用&#xff0c;例如int &a, int &b, int &c。在函数内对三个参数进行排序。主函数调用这个函数进行…...

To_Heart—总结——FWT(快速沃尔什变换)

目录闲话拿来求什么或与异或闲话 这个比FFT简单了很多呢&#xff0c;&#xff0c;大概是我可以学懂的水平&#xff01; 好像是叫 快速沃尔什变换 &#xff1f; 拿来求什么 以 FFT 来类比。我们 FFT 可以在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的复杂度下实现求解&#xff1…...

Google巨大漏洞让Win10、11翻车,小姐姐马赛克白打了

早年间电脑截图这项技能未被大多数人掌握时&#xff0c;许多人应该都使用过手机拍屏幕这个原始的方式。 但由于较低的画面质量极其影响其他用户的观感&#xff0c;常常受到大家的调侃。 但到了 Win10、11 &#xff0c;预装的截图工具让门槛大幅降低。 WinShiftS 就能快速打开…...

腾讯云服务器部署内网穿透(让其他人在不同ip可以访问我们localhost端口的主机项目)(nps开源项目)

首先打开shell连接我们的云服务器 然后我们再opt目录下面创建一个文件夹用来存放我们的压缩包和文件 mkdir /opt/nps 这个是它官方的安装图解.所以我们按照这个docker安装过程来: 然后我们用docker安装镜像.这样的话比较简单一点 docker pull ffdfgdfg/nps 然后我们查看docker…...

IDS、恶意软件、免杀技术、反病毒技术、APT、对称加密、非对称加密以及SSL的工作过程的技术介绍

IDS的简单介绍IDS是&#xff1a;入侵检测系统&#xff08;intrusion detection system&#xff0c;简称“IDS”&#xff09;是一种对网络传输进行即时监视&#xff0c;在发现可疑传输时发出警报或者采取主动反应措施的网络安全设备。它与其他网络安全设备的不同之处便在于&…...

怎么把pdf转换成高清图片

怎么把pdf转换成高清图片&#xff1f;可以使用以下两种方法&#xff1a; 方法一&#xff1a;使用Adobe Acrobat Pro DC 1、打开需要转换的PDF文件&#xff0c;点击“文件”菜单中的“导出为”&#xff0c;在弹出的菜单中选择“图像”&#xff0c;然后选择“JPEG”。 2、在“…...

MATLAB 系统辨识 + PID 自动调参

系统辨识 PID 自动调参 文章目录系统辨识 PID 自动调参1. 导入数据1.1 从 Excel 中导入数据2. 系统辨识3. PID 自动调参1. 导入数据 1.1 从 Excel 中导入数据 如果不是从Excel中导入可以跳过该步骤 导入函数&#xff1a; [num,txt,raw]xlsread(xxx\xxx.xlsx);num返回的是…...

【vue3】组合式API之setup()介绍与reactive()函数的使用·上

>&#x1f609;博主&#xff1a;初映CY的前说(前端领域) ,&#x1f4d2;本文核心&#xff1a;setup()概念、 reactive()的使用 【前言】vue3作为vue2的升级版&#xff0c;有着很多的新特性&#xff0c;其中就包括了组合式API&#xff0c;也就是是 Composition API。学习组合…...

爬虫Day3 csv和bs4

爬虫Day3 csv和bs4 一、CSV的读和写 1. 什么是csv文件 csv文件叫做&#xff1a;逗号分隔值文件&#xff0c;像Excel文件一样以行列的形式保存数据&#xff0c;保存数据的时候同一行的多列数据用逗号隔开。 2. csv文件的读写操作 1) csv文件读操作 from csv import reader…...

nnAudio的简单介绍

官方实现 https://github.com/KinWaiCheuk/nnAudio&#xff1b; 论文实现&#xff1a; nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolutional Neural Networks&#xff1b; 以下先对文章解读&#xff1a; abstract 在本文中&#x…...

【id:134】【20分】B. 求最大值最小值(引用)

题目描述 编写函数void find(int *num,int n,int &minIndex,int &maxIndex)&#xff0c;求数组num(元素为num[0]&#xff0c;num[1]&#xff0c;...&#xff0c;num[n-1]&#xff09;中取最小值、最大值的元素下标minIndex,maxIndex&#xff08;若有相同最值&#xff0…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...