系统架构师---数据库设计的四个阶段
需求分析、概念设计、逻辑设计和物理设计是数据库设计中的四个关键阶段,每个阶段都有其独特的任务和目标,以下是对这四个阶段的区别的详细阐述:
需求分析阶段
目标:全面理解用户对数据库系统的需求,包括业务需求、信息需求、处理需求等,为后续设计提供基础。
特点:
- 全面性:需要对整个系统进行全面的了解,包括各个功能模块和数据流程等。
- 用户导向:紧密围绕用户需求展开,确保设计结果能够满足用户的实际需要。
- 前瞻性:不仅要考虑当前的需求,还要考虑未来可能的扩展和变化。
概念设计阶段
目标:将用户需求抽象为独立于具体数据库管理系统的概念模型。
特点:
- 抽象性:避开数据库在计算机上的具体实现细节,用一种抽象的形式表示出来。
- 全局性:关注数据的整体逻辑结构,而非局部细节。
- 模型化:通常采用实体-联系(E-R)图等模型来表示数据及其相互之间的关系。
逻辑设计阶段
目标:将概念设计阶段的概念模型转换为特定数据库管理系统(DBMS)所支持的数据模型。
特点:
- 具体性:与物理设计相比,逻辑设计更关注数据的逻辑结构,而非物理存储细节。
- 适应性:需要根据所选DBMS的特点和限制对概念模型进行调整和优化。
- 规范化:在逻辑设计阶段,通常需要进行数据模式的规范化处理,以减少数据冗余和提高数据完整性。
物理设计阶段
目标:为数据库选择合适的存储结构、存取方法和存储介质等,确保数据库系统能够高效地运行。
特点:
- 物理性:直接关注数据的物理存储细节,如存储结构、索引设计、分区设计等。
- 性能导向:物理设计的主要目标是优化数据库系统的性能,包括查询效率、更新效率等。
- 实施性:物理设计的结果将直接用于数据库系统的实施和维护阶段,因此需要考虑实施的可行性和维护的便利性。
区别总结
| 阶段 | 目标 | 特点 |
|---|---|---|
| 需求分析 | 理解用户需求 | 全面性、用户导向、前瞻性 |
| 概念设计 | 抽象概念模型 | 抽象性、全局性、模型化 |
| 逻辑设计 | 转换数据模型 | 具体性、适应性、规范化 |
| 物理设计 | 选择存储结构和存取方法 | 物理性、性能导向、实施性 |
这四个阶段相互关联、逐步推进,共同构成了数据库设计的完整过程。每个阶段都有其独特的任务和目标,以确保最终的数据库设计能够满足用户的需求并具备优良的性能。
相关文章:
系统架构师---数据库设计的四个阶段
需求分析、概念设计、逻辑设计和物理设计是数据库设计中的四个关键阶段,每个阶段都有其独特的任务和目标,以下是对这四个阶段的区别的详细阐述: 需求分析阶段 目标:全面理解用户对数据库系统的需求,包括业务需求、信…...
MySQL_简介及安装、配置、卸载(超详细)
课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :…...
大数据处理技术:分布式文件系统HDFS
目录 1 实验名称: 2 实验目的 3 实验内容 4 实验原理 5 实验过程或源代码 5.1 HDFS的基本操作 5.2 HDFS-JAVA接口之读取文件 5.3 HDFS-JAVA接口之上传文件 5.4 HDFS-JAVA接口之删除文件 6 实验结果 6.1 HDFS的基本操作 6.2 HDFS-JAVA接口之读取文件 6.…...
组合数(模板)
1.杨辉三角求组合数,最高只能求几千内的组合数。 #include<bits/stdc.h> using namespace std; #define int long long int C[1005][1005]; signed main() {//求 1000 以内的组合数 for(int i0;i<1000;i){C[i][0]C[i][i]1;for(int j1;j<i;j){C[i][j]C[…...
时序数据库 TDengine 的入门体验和操作记录
时序数据库 TDengine 的学习和使用经验 什么是 TDengine ?什么是时序数据 ?使用RPM安装包部署默认的网络端口 TDengine 使用TDengine 命令行(CLI)taosBenchmark服务器内存需求删库跑路测试 使用体验文档纠错 什么是 TDengine &…...
Qt-QPushButton按钮类控件(22)
目录 描述 使用 给按钮添加图片 给按钮添加快捷键 添加槽函数 添加快捷键 添加组合键 开启鼠标的连发功能 描述 经过上面的一些介绍,我们也尝试的使用过了这个控件,接下来我们就要详细介绍这些比较重要的控件了 使用 给按钮添加图片 我们创建…...
镜舟科技与中启乘数科技达成战略合作,共筑数据服务新生态
当今企业数据管理日益规范化,数据应用系统随着数据类型与数量的增长不断细分,为了提升市场竞争力与技术实力,数据领域软件服务商与上下游伙伴的紧密对接与合作显得尤为重要。通过构建完善的生态系统,生态内企业间能够整合资源、共…...
蒸!--数据在内存中的存储
一.整数在内存中的存储 对于整形来说:数据存放内存中其实存放的是补码。 为什么? 在计算机系统中,数值⼀律⽤补码来表⽰和存储。 原因在于,使⽤补码,可以将符号位和数值域统⼀处理; 同时,加法和…...
利用AI增强现实开发:基于CoreML的深度学习图像场景识别实战教程
🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...
每个企业都需要 (但未使用) 的 BYOD 安全解决方案
远程办公模式的转变彻底改变了组织管理员工设备的方式。如今,员工希望能够灵活地在任何地方使用任何设备工作,这导致自带设备 (BYOD) 政策被广泛采用。 但随着越来越多的企业采用BYOD,一个问题依然摆在眼前:如何在不侵犯个人隐私…...
【多系统萎缩患者必看】科学锻炼秘籍,让生命之树常青
亲爱的小红书朋友们,👋 今天我们要聊一个温暖而坚韧的话题——关于多系统萎缩(MSA)患者的锻炼指南。在这个充满挑战的旅程中,锻炼不仅是身体的锻炼,更是心灵的滋养,是对抗病魔的勇敢姿态&#x…...
【Android】Room—数据库的基本操作
引言 在Android开发中,数据持久化是一个不可或缺的部分。随着应用的复杂度增加,选择合适的数据存储方式变得尤为重要。Room数据库作为Android Jetpack架构组件之一,提供了一种抽象层,使得开发者能够以更简洁、更安全的方式操作SQ…...
「数组」堆排序 / 大根堆优化(C++)
目录 概述 核心概念:堆 堆结构 数组存堆 思路 算法过程 up() down() Code 优化方案 大根堆优化 Code(pro) 复杂度 总结 概述 在「数组」快速排序 / 随机值优化|小区间插入优化(C)中,我们介绍了三种基本排序中的冒泡…...
Edegex Foundry docker和源码安装
edgex文档下载 https://github.com/edgexfoundry/edgex-docs/branches/all 在线文档查看 首先要安装python3环境 然后后安装 打开超级终端 #pip3 install mkdocs #mkdocs serve 在浏览器中输入 http://127.0.0.1:8000/edgex-docs/2.3/ 即可打开在线文档 edgex入门可以参考…...
阿里P8和P9级别有何要求
阿里巴巴的P8和P9级别,代表着公司的资深技术专家或管理者岗位,要求候选人具有丰富的职业经历、深厚的技术能力以及出色的领导力。以下是对P8和P9级别的要求、考察点以及准备建议的详细分析。 P8 级别要求 1. 职业经历: 8年以上的工作经验&a…...
【目标检测数据集】锯子数据集1107张VOC+YOLO格式
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1107 标注数量(xml文件个数):1107 标注数量(txt文件个数):1107 标注…...
移动产业处理器接口(MIPI)协议是什么?
未来汽车的宏伟愿景备受瞩目,特别是驱动这些汽车的技术更是成为焦点。如今,传感器对于汽车视觉和安全技术的下一阶段至关重要,因为驾驶员和乘客都依赖于它们。这些传感器能够支持众多应用,这些应用往往基于人工智能(AI…...
OpenAI o1:隐含在训练与推理间的动态泛化与流形分布
随着OpenAI o1发布,进一步激发了产业与学术各界对AGI的期待以及new scaling law下的探索热情,也看到来自社区和专业机构对o1的阐释,但总感觉还差点什么,因此决定以自己的角度分篇幅梳理下,并分享给大伙: O…...
沉浸式体验和评测Meta最新超级大语言模型405B
2024年7月23日, 亚马逊云科技的AI模型托管平台Amazon Bedrock正式上线了Meta推出的超级参数量大语言模型 - Llama 3.1模型,小李哥也迫不及待去体验和试用了该模型,那这么多参数量的AI模型究竟强在哪里呢?Llama 3.1模型是Meta&…...
Python 课程10-单元测试
前言 在现代软件开发中,单元测试 已成为一种必不可少的实践。通过测试,我们可以确保每个功能模块在开发和修改过程中按预期工作,从而减少软件缺陷,提高代码质量。而测试驱动开发(TDD) 则进一步将测试作为开…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...
背包问题双雄:01 背包与完全背包详解(Java 实现)
一、背包问题概述 背包问题是动态规划领域的经典问题,其核心在于如何在有限容量的背包中选择物品,使得总价值最大化。根据物品选择规则的不同,主要分为两类: 01 背包:每件物品最多选 1 次(选或不选&#…...
AWSLambda之设置时区
目标 希望Lambda运行的时区是东八区。 解决 只需要设置lambda的环境变量TZ为东八区时区即可,即Asia/Shanghai。 参考 使用 Lambda 环境变量...
【见合八方平面波导外腔激光器专题系列】用于干涉光纤传感的低噪声平面波导外腔激光器2
----翻译自Mazin Alalus等人的文章 摘要 1550 nm DWDM 平面波导外腔激光器具有低相位/频率噪声、窄线宽和低 RIN 等特点。该腔体包括一个半导体增益芯片和一个带布拉格光栅的平面光波电路波导,采用 14 引脚蝶形封装。这种平面波导外腔激光器设计用于在振动和恶劣的…...
DJango知识-模型类
一.项目创建 在想要将项目创键的目录下,输入cmd (进入命令提示符)在cmd中输入:Django-admin startproject 项目名称 (创建项目)cd 项目名称 (进入项目)Django-admin startapp 程序名称 (创建程序)python manage.py runserver 8080 (运行程序)将弹出的网址复制到浏览器中…...
