基于yolov8的红外小目标无人机飞鸟检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
【算法介绍】
基于YOLOv8的红外小目标无人机与飞鸟检测系统是一项集成了前沿技术的创新解决方案。该系统利用YOLOv8深度学习模型的强大目标检测能力,结合红外成像技术,实现了对小型无人机和飞鸟等低空飞行目标的快速、准确检测。
YOLOv8作为YOLO系列的最新版本,在检测精度和速度上均有显著提升,尤其适用于复杂和高动态的场景。通过红外成像,该系统能够在夜间或低能见度条件下有效捕捉目标,克服了传统可见光相机的局限性。
该系统具备高度的灵活性和可扩展性,可以根据具体需求进行定制和优化,以适应不同的应用场景和环境条件。它能够实时输出检测结果,包括目标的位置、类别和置信度等信息,为无人机视觉导航、交通监控、安全巡逻等领域提供了有力支持。
此外,基于YOLOv8的红外小目标无人机与飞鸟检测系统还具备强大的抗干扰能力和生存能力,能够在复杂电磁环境中稳定工作,确保检测的准确性和可靠性。这一系统的引入,将进一步提升无人机与飞鸟探测的精度和效率,为现代社会带来更多便利和安全。
【效果展示】
【测试环境】
windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.2.95
【模型可以检测出类别】
Airplane
Bird
Drone
Helicopter
【训练数据集】
https://download.csdn.net/download/FL1623863129/89767353
【训练信息】
参数 | 值 |
训练集图片数 | 8711 |
验证集图片数 | 1422 |
训练map | 94.6% |
训练精度(Precision) | 94.5% |
训练召回率(Recall) | 91.7% |
验证集测试精度信息
类别 | MAP0.5(单位:%) |
all | 95 |
Airplane | 94 |
Bird | 87 |
Drone | 99 |
Helicopter | 99 |
【部分实现源码】
class Ui_MainWindow(QtWidgets.QMainWindow):signal = QtCore.pyqtSignal(str, str)def setupUi(self):self.setObjectName("MainWindow")self.resize(1280, 728)self.centralwidget = QtWidgets.QWidget(self)self.centralwidget.setObjectName("centralwidget")self.weights_dir = './weights'self.picture = QtWidgets.QLabel(self.centralwidget)self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))self.picture.setStyleSheet("background:black")self.picture.setObjectName("picture")self.picture.setScaledContents(True)self.label_2 = QtWidgets.QLabel(self.centralwidget)self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))self.label_2.setObjectName("label_2")self.cb_weights = QtWidgets.QComboBox(self.centralwidget)self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))self.cb_weights.setObjectName("cb_weights")self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)self.label_3 = QtWidgets.QLabel(self.centralwidget)self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))self.label_3.setObjectName("label_3")self.hs_conf = QtWidgets.QSlider(self.centralwidget)self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))self.hs_conf.setProperty("value", 25)self.hs_conf.setOrientation(QtCore.Qt.Horizontal)self.hs_conf.setObjectName("hs_conf")self.hs_conf.valueChanged.connect(self.conf_change)self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))self.dsb_conf.setMaximum(1.0)self.dsb_conf.setSingleStep(0.01)self.dsb_conf.setProperty("value", 0.25)self.dsb_conf.setObjectName("dsb_conf")self.dsb_conf.valueChanged.connect(self.dsb_conf_change)self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))self.dsb_iou.setMaximum(1.0)self.dsb_iou.setSingleStep(0.01)self.dsb_iou.setProperty("value", 0.45)self.dsb_iou.setObjectName("dsb_iou")self.dsb_iou.valueChanged.connect(self.dsb_iou_change)self.hs_iou = QtWidgets.QSlider(self.centralwidget)self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))self.hs_iou.setProperty("value", 45)self.hs_iou.setOrientation(QtCore.Qt.Horizontal)self.hs_iou.setObjectName("hs_iou")self.hs_iou.valueChanged.connect(self.iou_change)self.label_4 = QtWidgets.QLabel(self.centralwidget)self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))self.label_4.setObjectName("label_4")self.label_5 = QtWidgets.QLabel(self.centralwidget)self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))self.label_5.setObjectName("label_5")self.le_res = QtWidgets.QTextEdit(self.centralwidget)self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))self.le_res.setObjectName("le_res")self.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(self)self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))self.menubar.setObjectName("menubar")self.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(self)self.statusbar.setObjectName("statusbar")self.setStatusBar(self.statusbar)self.toolBar = QtWidgets.QToolBar(self)self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)self.toolBar.setObjectName("toolBar")self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)self.actionopenpic = QtWidgets.QAction(self)icon = QtGui.QIcon()icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionopenpic.setIcon(icon)self.actionopenpic.setObjectName("actionopenpic")self.actionopenpic.triggered.connect(self.open_image)self.action = QtWidgets.QAction(self)icon1 = QtGui.QIcon()icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action.setIcon(icon1)self.action.setObjectName("action")self.action.triggered.connect(self.open_video)self.action_2 = QtWidgets.QAction(self)icon2 = QtGui.QIcon()icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action_2.setIcon(icon2)self.action_2.setObjectName("action_2")self.action_2.triggered.connect(self.open_camera)self.actionexit = QtWidgets.QAction(self)icon3 = QtGui.QIcon()icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionexit.setIcon(icon3)self.actionexit.setObjectName("actionexit")self.actionexit.triggered.connect(self.exit)self.toolBar.addAction(self.actionopenpic)self.toolBar.addAction(self.action)self.toolBar.addAction(self.action_2)self.toolBar.addAction(self.actionexit)self.retranslateUi()QtCore.QMetaObject.connectSlotsByName(self)self.init_all()
【使用步骤】
使用步骤:
(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可
【提供文件】
python源码
yolov8n.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)
【源码下载地址】
https://download.csdn.net/download/FL1623863129/89767455
相关文章:

基于yolov8的红外小目标无人机飞鸟检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
【算法介绍】 基于YOLOv8的红外小目标无人机与飞鸟检测系统是一项集成了前沿技术的创新解决方案。该系统利用YOLOv8深度学习模型的强大目标检测能力,结合红外成像技术,实现了对小型无人机和飞鸟等低空飞行目标的快速、准确检测。 YOLOv8作为YOLO系列的…...

网络封装分用
目录 1,交换机 2,IP 3,接口号 4,协议 分层协议的好处: 5,OSI七层网络模型. 6,TCP/IP五层网络模型(主流): [站在发送方视角] [接收方视角] 1,交换机 交换机和IP没有关系,相当于是对路由器接口的扩充,这时相当于主机都与路由器相连处于局域网中,把越来越多的路由器连接起…...

【Finetune】(一)、transformers之BitFit微调
文章目录 0、参数微调简介1、常见的微调方法2、代码实战2.1、导包2.2、加载数据集2.3、数据集处理2.4、创建模型2.5、BitFit微调*2.6、配置模型参数2.7、创建训练器2.8、模型训练2.9、模型推理 0、参数微调简介 参数微调方法是仅对模型的一小部分的参数(这一小部分可…...
ubuntu24系统普通用户免密切换到root用户
普通用户登录系统后需要切换到root用户,这边需要密码,现在不想让用户知道密码是多少。 sudo: 1 incorrect password attempt $ su - Password: root-security-cm5:~#开始配置普通用户免密切换到root用户,编辑配置文件 /etc/sudoers 最后增加…...
如何应对pcdn技术中遇到的网络安全问题?
在应对网络安全问题时,需要采取一系列的操作措施,以确保网络环境的稳定性和数据的安全性。以下是一些建议: 选择可靠的PCDN提供商:与有良好安全记录的PCDN提供商合作,确保提供商具备专业的安全团队,能够提…...

【WRF工具】WRF Domain Wizard第一期:软件下载及安装
【WRF工具介绍】WRF Domain Wizard下载及安装 1 WRF Domain Wizard 的主要功能2 使用 WRF Domain Wizard 的步骤2.1 安装 WRF Domain Wizard:2.2 启动 WRF Domain Wizard:2.3 定义计算域:2.4 生成配置文件:2.5 运行 WPS 和 WRF&am…...

使用CUBE_MX实现STM32 DMA功能 (储存器发送数据到外设串口)+(外设串口将数据写入到存储器)
目录 一、配置串口打印(参考串口打印的文章) 二、CUBE_MX配置 三、KEIL5配置 1.打开dma.c文件(默认初始化DMA中断函数) 2.打开usart.c文件 3.打开main.c文件(储存器发送数据到外设串口) 4.打开main.c…...

【JavaScript】数据结构之树
什么是树形结构? 一种分层数据的抽象模型,用来分层级关系的。虚拟dom它所组织的那个数据原理就是树形结构 深度优先搜索(遍历)- 递归 从根出发,尽可能深的搜索树的节点技巧 访问根节点对根节点的children挨个进行深…...

【AI大模型】LLM主流开源大模型介绍
目录 🍔 LLM主流大模型类别 🍔 ChatGLM-6B模型 2.1 训练目标 2.2 模型结构 2.3 模型配置(6B) 2.4 硬件要求 2.5 模型特点 2.6 衍生应用 🍔 LLaMA模型 3.1 训练目标 3.2 模型结构 3.3 模型配置(7B) 3.4 硬件…...

Uniapp的alertDialog返回值+async/await处理确定/取消问题
今天在使用uniui的alertDialog时,想添加一个确定/取消的警告框时 发现alertDialog和下面的处理同步进行了,没有等待alaertDialog处理完才进行 查询后发现问题在于 await 关键字虽然被用来等待 alertDialog.value.open() 的完成,但是 alertDi…...
Spring Boot中的响应与分层解耦架构
Spring Boot中的响应与分层解耦架构 在Spring Boot框架中,响应与分层解耦架构是两个核心概念,它们共同促进了应用程序的高效性、可维护性和可扩展性。下面将详细探讨这两个方面,包括Spring Boot的响应机制、分层解耦的三层架构以及它们在实际…...

基于python+django+vue的图书管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于pythondjangovueMySQL的图…...

Oracle数据库安装与SQL*Plus使用
一、实验过程 1、安装完数据库服务器程序后,查看系统服务启动状况并截图。 2、启动 SOL Plus工具,分别以SYS用户和 SYSTEM用户登录数据库,并解锁scott用户,用scott用户登录。每次登录完成后用show user命令查看当前用户,并截图。…...

C#通过MXComponent与三菱PLC通信
1,MXComponent安装包与手册。 https://download.csdn.net/download/lingxiao16888/89767137 2,使用管理员权限打开MXComponent,并进行配置。 3,引用相应的类库。 //通信类库 ActUtlTypeLib.dll或者ActProgType.dll 注明&#x…...

深度学习实战91-利用时空特征融合模型的城市网络流量预测分析与应用
大家好,我是微学AI,今天给大家介绍一下深度学习实战91-利用时空特征融合模型的城市网络流量预测分析与应用。本文围绕基于时空特征融合的城市网络流量预测展开。介绍了城市网络流量预测的重要性和现实需求,以及时空特征融合模型,包括其原理和优势。然后展示所使用的数据集,…...

GlusterFS 分布式文件系统
一、GlusterFS 概述 1.1 什么是GlusterFS GlusterFS 是一个开源的分布式文件系统,它可以将多个存储服务器结合在一起,创建一个大的存储池,供客户端使用。它不需要单独的元数据服务器,这样可以提高系统的性能和可靠性。由于没有…...

论文学习笔记6:Relation-Aware Heterogeneous Graph Neural Network for Fraud Detection
文章目录 Abstract一、Introduction二、Preliminaries2.1Problem Definition2.2Related Works 三、Proposed Method3.1Model Architecture3.2Computation Graph Pre-process3.3Heterogeneous Propagation Abstract 欺诈检测是金融和社交媒体领域的一项重要数据挖掘任务。传统的…...

无人机光电吊舱的技术!!
1. 成像技术 可见光成像:通过高分辨率相机捕捉地面或空中目标的清晰图像,提供直观的视觉信息。 红外热成像:利用红外辐射探测目标的温度分布,实现夜间或恶劣天气条件下的隐蔽目标发现。 多光谱成像:通过不同波段的光…...
C++——判断year是不是闰年。
没注释的源代码 #include <iostream> using namespace std; void Y(int y); int main() { int year; cout<<"请输入一个年份:"; cin>>year; Y(year); return 0; } void Y(int y) { if(((y%40)&&(y%100!0))||(y%…...

31. 三维向量Vector3与模型位置
点模型Points、线模型Line、网格网格模型Mesh等模型对象的父类都是Object3D (opens new window),如果想对这些模型进行旋转、缩放、平移等操作,如何实现,可以查询Threejs文档Object3D (opens new window)对相关属性和方法的介绍。 三维向量Ve…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...