Python数据可视化(三)(pyecharts)
分享一些python-pyecharts作图小技巧,用于展示汇报。
一、特点
- 任何元素皆可配置
- pyecharts只支持python原生的数据类型,包括int,float,str,bool,dict,list
- 动态展示,炫酷的效果,给人视觉冲击力
# 安装
pip install pyecharts from pyecharts import options as opts #全局配置
from pyecharts.globals import ThemeType # 主题chart.render('idx_name_Completion%.html') #保存为网页,可进一步嵌入到ppt
chart.render_notebook() #直接查看结果
二、常用图形
(1)漏斗图
功能:用于呈现不同阶段数据流变化的情况
示例代码:
from pyecharts.charts import Funnel
x=['visit','shoppingcar','order','pay','done']
y=[1000,890,500,300,280]
data=[i for i in zip(x,y)]
chart=Funnel()
chart.add(series_name='headcount',data_pair=data,sort_='ascending',gap=15,label_opts=opts.LabelOpts(is_show=True,position='inside'),tooltip_opts=opts.TooltipOpts(trigger='item',formatter='{a}:{c}'))chart.set_global_opts(title_opts=opts.TitleOpts(title='e_buy_funnle',pos_left='left'),legend_opts=opts.LegendOpts(is_show=False))
chart.render('e_buy_funnle.html')
(2)散点图(带有涟漪效果)
功能:同时比较2个指标的数据比较
示例代码:
from pyecharts.charts import EffectScatterx=[28,16,34,25,35,46,20,40] # data['x'].tolist()
y=[45,25,78,46,18,35,94,27] # data['y'].tolist()chart=EffectScatter()
chart.add_xaxis(x)
chart.add_yaxis(series_name='age,shopping($)',y_axis=y,label_opts=opts.LabelOpts(is_show=False),symbol_size=15)
chart.set_global_opts(title_opts=opts.TitleOpts(title='salse-scatter'),yaxis_opts=opts.AxisOpts(type_='value',name='shopping($)',name_location='middle',name_gap=40),xaxis_opts=opts.AxisOpts(type_='value',name='age',name_location='middle',name_gap=40),tooltip_opts=opts.TooltipOpts(trigger='item',formatter='{a}:{c}'))
chart.render('lianyi-scatter.html')
(3)水球图
功能:适用于展示单个或多个百分数
示例代码:
from pyecharts.charts import Liquida=68
t=100
chart=Liquid()
chart.add(series_name='productA',data=[a/t],shape='circle' # 改变形状,如圆形、矩形rect、箭头pin等)
chart.set_global_opts(title_opts=opts.TitleOpts(title='sales',pos_left='center'))
chart.render('sales.html')
from pyecharts.charts import Liquida=68
b=120
c=37
t=100
chart=Liquid()chart.set_global_opts(title_opts=opts.TitleOpts(title='sales',pos_left='center'))
chart.add(series_name='productA',data=[a/t],center=['20%','50%'] # 指定水球中心点在图表中的位置)
chart.add(series_name='productB',data=[b/t],center=['50%','50%'])
chart.add(series_name='productC',data=[c/t],center=['80%','50%'])
chart.render('sales-2.html')
(4)仪表盘
功能:适用于展示单个或多个百分比
示例代码:
from pyecharts.charts import Gaugechart=Gauge()
chart.add(series_name='idx_name',data_pair=[('Completion%','62.25')],split_number=10 #平均分割段数,radius='50%' # 设置仪表盘半径,title_label_opts=opts.LabelOpts(font_size=20,color='red',font_family='Microsoft YaHei'))
chart.set_global_opts(tooltip_opts=opts.TooltipOpts(is_show=True,formatter='{a}<br/>{b}:{c}%') # a = idx_name,b=done%,c=62.25,<br/>表示换行,legend_opts=opts.LegendOpts(is_show=False))chart.render('idx_name_Completion%.html')
chart.render_notebook()
(5)词云图
功能:展示关键词频数的图表
示例代码:
from pyecharts.charts import WordCloud#data=pd.read_excel('')
name=['流浪地球2','满江红','熊出没','无名','英雄'] #data['movies']
value=[1000,1200,500,300,280] #data['ticket']
data1=[z for z in zip(name,value)]
chart=WordCloud()
chart.add('ticket',data_pair=data1,word_size_range=[6,20],shape='diamond') # shape可改变词云图的外形轮廓chart.set_global_opts(title_opts=opts.TitleOpts(title='ticket analysis',title_textstyle_opts=opts.TextStyleOpts(font_size=30)) ,tooltip_opts=opts.TooltipOpts(is_show=True))
chart.render('ticket-wordcount.html')
三、嵌入到ppt
具体方法参考:https://blog.csdn.net/zjkpy_5/article/details/123264097
参考《Python爬虫、数据分析与可视化——从入门到精通》,感谢原作者。
相关文章:

Python数据可视化(三)(pyecharts)
分享一些python-pyecharts作图小技巧,用于展示汇报。 一、特点 任何元素皆可配置pyecharts只支持python原生的数据类型,包括int,float,str,bool,dict,list动态展示,炫酷的效果,给人视觉冲击力 # 安装 pip install pyecharts fr…...
【Redis面试指南】
Redis面试指南 Redis是一个开源的、基于内存的、高性能的键值对存储系统,它可以用于存储非常大量的数据,并且可以在短时间内获取数据。Redis的性能被广泛用于Web应用程序的缓存层,以提高应用程序的性能和可用性。Redis的面试是一个比较复杂的…...

大数据技术之Hadoop(生产调优手册)
第1章 HDFS—核心参数 1.1 NameNode内存生产配置 1)NameNode内存计算 每个文件块大概占用150byte,一台服务器128G内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1亿 G MB KB Byte 2)Hadoop…...
「Vue源码学习」常见的 Vue 源码面试题,看完可以说 “精通Vue” 了吗?
Vue源码面试题一、行时(Runtime) 编译器(Compiler) vs. 只包含运行时(Runtime-only)webpackRollupBrowserify二、Vue 的初始化过程(面试关问:new Vue(options) 发生了什么࿱…...

FreeModbus RTU 移植指南
FreeModbus 简介 FreeModbus 是一个免费的软件协议栈,实现了 Modbus 从机功能: 纯 C 语言支持 Modbus RTU/ASCII支持 Modbus TCP 本文介绍 Modbus RTU 移植。 移植环境: 裸机Keil MDK 编译器Cortex-M3 内核芯片(LPC1778/88&…...

《唐诗三百首》数据源网络下载
2023年的 元宵之夜,这场以“长安”为主题的音乐会火了!在抖音,超过2300万人次观看了直播,在线同赏唐诗与交响乐的融合。许多网友惊呼,上学时那些害怕背诵的诗句,原来还可以有这么美的表达这场近80分钟的音乐…...

(深度学习快速入门)第五章第一节2:GAN经典案例之MNIST手写数字生成
获取pdf:密码7281 文章目录一:数据集介绍二:GAN简介(1)简介(2)损失函数三:代码编写(1)参数及数据预处理(2)生成器与判别器模型&#x…...

雁过留痕,竟是病毒的痕迹?
凌恩生物全新升级宏病毒组分析流程;聚焦DNA,RNA病毒组研究热点;高灵敏度检测vOTUs;多软件整合,精准鉴定病毒序列;直击地化循环关键环节,助力宏病毒组科研成功!期刊:Micro…...

Linux基本功系列之sort命令实战
文章目录前言一. sort命令介绍二. 语法格式及常用选项三. 参考案例3.1 按照文本默认排序3.2 忽略相同的行3.3 按数字大小进行排序3.4 检查文件是否已经按照顺序排序3.5 将第3列按照数字大小进行排序3.6 将排序结果输出到文件四. 探讨 -k的高级用法总结前言 大家好,…...

【笔记】移动端自动化:adb调试工具+appium+UIAutomatorViewer
学习源: https://www.bilibili.com/video/BV11p4y197HQ https://blog.csdn.net/weixin_47498728/category_11818905.html 一、移动端测试环境搭建 学习目标 1.能够搭建java 环境 2.能够搭建android 环境 (一)整体思路 我们的目标是Andr…...

面试复习题--性能检测原理
1、布局性能检测 Systrace,内存优化工具中也用到了 Systrace,这里关注 Systrace 中的 Frames 页面,正常情况下圆点为绿色,当出现黄色或者红色的圆点时,表现出现了丢帧。 Layout Inspector,是 AndroidStudio 自带工具…...

@LoadBalanced 和 @RefreshScope 同时使用,负载均衡失效分析
背景 最近引入了 Nacos Config 配置管理能力,说起来用法很简单,还是踩了三个坑。 Nacos Config 的 nacos 的帐号密码加密配置后,怎么解密而且在 NacosConfigBootstrapConfiguration 真正注入 Nacos Config 注入之前,而且不能触发…...
2023年个人计划
2023年个人计划 可能是最近太清闲,感觉生活很无聊,就胡乱做下新年的规划吧,扰乱下烦闷的心 1 二宝健健康康,活泼可爱 目前老婆已经怀孕5周左右了,二宝将在进行年中降生,希望老婆少受点罪,二宝…...

加拿大访问学者家属如何办理探亲签证?
由于大多数访问学者的访学期限都为一年,家人来访不仅可以缓解访学的寂寞生活,而且也是家人到加拿大体验国外风情的好机会。家属在国内申请赴加签证时,如果材料齐全,一般上午递交了申请,下午就可以拿到签证。以下是家人…...

操作系统基础---多线程
文章目录操作系统基础---多线程1.为何引入线程程序并发的时空开销线程的设计思路线程的状态和线程控制块TCB2.线程与进程的比较3.线程的实现⭐1.内核支持线程KST2.用户级线程3.组合方式操作系统基础—多线程 1.为何引入线程 利用传统的进程概念和设计方法已经难以设计出适合于…...
2022-12-10青少年软件编程(C语言)等级考试试卷(六级)解析
2022-12-10青少年软件编程(C语言)等级考试试卷(六级)解析T1、区间合并 给定 n 个闭区间 [ai; bi],其中i1,2,...,n。任意两个相邻或相交的闭区间可以合并为一个闭区间。例如,[1;2] 和 [2;3] 可以合并为 [1;3…...

太酷了,用Python实现一个动态条形图!
大家好,我是小F~说起动态条形图,小F之前推荐过两个Python库,比如「Bar Chart Race」、「Pandas_Alive」,都可以实现。今天就给大家再介绍一个新的Python库「pynimate」,一样可以制作动态条形图,…...

单元测试junit+mock
单元测试 是什么? 单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证。至于“单元”的大小或范围,并没有一个明确的标准,“单元”可以是一个方法、类、功能模块或者子系统。 单元测试通…...

2022Q4手机银行新版本聚焦提升客群专属、财富开放平台、智能化能力,活跃用户规模6.91亿人
易观:2022年第4季度,手机银行APP迭代升级加快,手机银行作为零售银行服务及经营的主阵地,与零售银行业务发展的联系日益紧密。迭代升级一方面可以顺应零售银行发展战略及方向,对手机银行业务布局进行针对性调整优化&…...

YOLO-V1~V3经典物体检测算法介绍
大名鼎鼎的YOLO物体检测算法如今已经出现了V8版本,我们先来了解一下它前几代版本都做了什么吧。本篇文章介绍v1-v3,后续会继续更新。一、节深度学习经典检测方法概述1.1 检测任务中阶段的意义我们所学的深度学习经典检测方法 ,有些是单阶段的…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...