当前位置: 首页 > news >正文

AI学习指南深度学习篇-Adam的Python实践

AI学习指南深度学习篇-Adam的Python实践

在深度学习领域,优化算法是影响模型性能的关键因素之一。Adam(Adaptive Moment Estimation)是一种广泛使用的优化算法,因其在多种问题上均表现优异而被广泛使用。本文将深入探讨Adam优化器,并提供详细的代码示例,展示如何在Python的深度学习库(如TensorFlow和PyTorch)中实现Adam,进行模型训练以及调参过程。

引言

优化算法的选择会影响深度学习模型的收敛速度和最终性能。Adam算法不仅结合了动量(Momentum)的优点,还引入了自适应学习率,这使得其在许多任务中表现良好。本文将通过实际代码示例介绍Adam的实现和调参过程,让读者能够在自己的项目中有效应用这一算法。

Adam优化器概述

2.1 公式推导

Adam优化器的核心思想是计算梯度的动量以及梯度的平方动量,并利用这两个动量来调整学习率。Adam的更新公式如下:

  1. 初始化参数

    • ( m t = 0 ) ( m_t = 0 ) (mt=0)(一阶矩估计)
    • ( v t = 0 ) ( v_t = 0 ) (vt=0)(二阶矩估计)
    • ( t = 0 ) ( t = 0 ) (t=0)(时间步长)
    • ( β 1 , β 2 ) ( \beta_1, \beta_2 ) (β1,β2)(通常取值为0.9,0.999)
    • ( ϵ ) ( \epsilon ) (ϵ)(通常取小值以避免除零错误)
  2. 参数更新
    [ t = t + 1 ] [ t = t + 1 ] [t=t+1]
    [ m t = β 1 ⋅ m t − 1 + ( 1 − β 1 ) ⋅ g t ] [ m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t ] [mt=β1mt1+(1β1)gt]
    [ v t = β 2 ⋅ v t − 1 + ( 1 − β 2 ) ⋅ g t 2 ] [ v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 ] [vt=β2vt1+(1β2)gt2]
    [ m ^ t = m t 1 − β 1 t ] [ \hat{m}_t = \frac{m_t}{1 - \beta_1^t} ] [m^t=1β1tmt]
    [ v ^ t = v t 1 − β 2 t ] [ \hat{v}_t = \frac{v_t}{1 - \beta_2^t} ] [v^t=1β2tvt]
    [ θ t = θ t − 1 − α v ^ t + ϵ ⋅ m ^ t ] [ \theta_{t} = \theta_{t-1} - \frac{\alpha}{\hat{v}_t + \epsilon} \cdot \hat{m}_t ] [θt=θt1v^t+ϵαm^t]

2.2 参数说明

  • 学习率 ( ( α ) ) ((\alpha)) ((α)):控制每次更新的步幅,通常初始值设为0.001。
  • ( β 1 ) (\beta_1) (β1) ( β 2 ) (\beta_2) (β2):分别控制一阶矩和二阶矩的衰减率。
  • ( ϵ ) (\epsilon) (ϵ):通常设为 ( 1 0 − 8 ) (10^{-8}) (108),避免在计算时出现除零错误。

在TensorFlow中使用Adam

3.1 环境准备

确保你的计算环境中安装了TensorFlow和其他必要的库:

pip install tensorflow numpy matplotlib

3.2 数据加载

我们将使用Keras提供的MNIST手写数字数据集作为示例:

import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt# 加载MNIST数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 数据预处理
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

3.3 构建模型

我们将定义一个简单的神经网络模型:

def create_model():model = models.Sequential()model.add(layers.Flatten(input_shape=(28, 28)))model.add(layers.Dense(128, activation="relu"))model.add(layers.Dropout(0.2))model.add(layers.Dense(10, activation="softmax"))return model

3.4 训练模型

使用Adam优化器训练模型:

model = create_model()# 编译模型
model.compile(optimizer="adam",loss="categorical_crossentropy",metrics=["accuracy"])# 训练模型
history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

3.5 调整超参数

可以通过以下方式调整超参数,比如修改学习率或尝试不同的批大小:

from tensorflow.keras.optimizers import Adam# 创建自定义Adam优化器
adam = Adam(learning_rate=0.001)# 重新编译模型
model.compile(optimizer=adam, loss="categorical_crossentropy", metrics=["accuracy"])# 重新训练模型
history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_split=0.2)

在PyTorch中使用Adam

4.1 环境准备

确保你的计算环境中安装了PyTorch和其他必要的库:

pip install torch torchvision numpy matplotlib

4.2 数据加载

与TensorFlow类似,我们将使用同样的数据集:

import torch
from torchvision import datasets, transforms
from torch import nn, optim# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])# 加载MNIST数据集
trainset = datasets.MNIST(root="./data", train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)testset = datasets.MNIST(root="./data", train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False)

4.3 构建模型

PyTorch模型构建如下:

class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.dropout = nn.Dropout(0.2)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = x.view(x.shape[0], -1)  # 展平操作x = torch.relu(self.fc1(x))x = self.dropout(x)x = self.fc2(x)return xmodel = SimpleNN()

4.4 训练模型

使用Adam优化器训练模型的示例如下:

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
epochs = 10
for epoch in range(epochs):running_loss = 0for images, labels in trainloader:optimizer.zero_grad()  # 清空梯度output = model(images)  # 前向传播loss = criterion(output, labels)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数running_loss += loss.item()print(f"Epoch {epoch + 1}/{epochs} - Loss: {running_loss/len(trainloader)}")

4.5 调整超参数

在PyTorch中,你也可以像在TensorFlow中那样调整超参数,下面是修改学习率的例子:

# 创建自定义Adam优化器
optimizer = optim.Adam(model.parameters(), lr=0.0001)# 重新训练模型
for epoch in range(epochs):running_loss = 0for images, labels in trainloader:optimizer.zero_grad()output = model(images)loss = criterion(output, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f"Epoch {epoch + 1}/{epochs} - Loss: {running_loss/len(trainloader)}")

结论

Adam优化器因其良好的自适应性和快速的收敛能力,成为深度学习中最流行的优化算法之一。在TensorFlow和PyTorch等深度学习框架中,Adam均被用户广泛应用。本文详细介绍了在这两种框架中使用Adam优化器进行模型训练的完整流程,并展示了如何在训练过程中灵活调整超参数。希望这篇文章能帮助你更好地理解和应用Adam优化器。尽管TensorFlow和PyTorch有其独特之处,但选用合适的优化器对于模型的最终表现仍然至关重要。在实际应用中,建议尝试多种优化算法并进行超参数调整,以获得最佳的训练效果。

如果想了解更深入的Adam算法工作原理或其他优化算法的使用,请关注后续更新,继续学习更多的深度学习内容。

相关文章:

AI学习指南深度学习篇-Adam的Python实践

AI学习指南深度学习篇-Adam的Python实践 在深度学习领域,优化算法是影响模型性能的关键因素之一。Adam(Adaptive Moment Estimation)是一种广泛使用的优化算法,因其在多种问题上均表现优异而被广泛使用。本文将深入探讨Adam优化器…...

08_React redux

React redux 一、理解1、学习文档2、redux 是什么吗3、什么情况下需要使用 redux4、redux 工作流程5、react-redux 模型图 二、redux 的三个核心概念1、action2、reducer3、store 三、redux 的核心 API1、getState()2、dispatch() 四、使用 redux 编写应用1、求和案例\_redux 精…...

2024华为杯研究生数学建模竞赛(研赛)选题建议+初步分析

难度&#xff1a;DE<C<F&#xff0c;开放度&#xff1a;CDE>F。 华为专项的题目&#xff08;A、B题&#xff09;暂不进行选题分析&#xff0c;不太建议大多数同学选择&#xff0c;对自己专业技能有很大自信的可以选择华为专项的题目。后续会直接更新A、B题思路&#…...

001.从0开始实现线性回归(pytorch)

000动手从0实现线性回归 0. 背景介绍 我们构造一个简单的人工训练数据集&#xff0c;它可以使我们能够直观比较学到的参数和真实的模型参数的区别。 设训练数据集样本数为1000&#xff0c;输入个数&#xff08;特征数&#xff09;为2。给定随机生成的批量样本特征 X∈R10002 …...

Relations Prediction for Knowledge Graph Completion using Large Language Models

文章目录 题目摘要简介相关工作方法论实验结论局限性未来工作 题目 使用大型语言模型进行知识图谱补全的关系预测 论文地址&#xff1a;https://arxiv.org/pdf/2405.02738 项目地址&#xff1a; https://github.com/yao8839836/kg-llm 摘要 知识图谱已被广泛用于以结构化格式表…...

2024年中国研究生数学建模竞赛D题思路代码分析——大数据驱动的地理综合问题

地理系统是自然、人文多要素综合作用的复杂巨系统[1-2]&#xff0c;地理学家常用地理综合的方式对地理系统进行主导特征的表达[3]。如以三大阶梯概括中国的地形特征&#xff0c;以秦岭—淮河一线和其它地理区划的方式揭示中国气温、降水、植被、土壤及生态环境在水平和垂直方向…...

全国31省对外开放程度、经济发展水平、政府干预程度指标数据(2000-2022年)

旨在分析2000-2022年间中国31个省份的对外开放程度、经济发展水平和政府干预程度&#xff0c;探讨其背后的动因与影响。 2000年-2022年 全国31省对外开放程度、经济发展水平、政府干预程度指标数据https://download.csdn.net/download/2401_84585615/89478612 数据概览 对外…...

计算机网络传输层---课后综合题

线路&#xff1a;TCP报文下放到物理层传输。 TCP报文段中&#xff0c;“序号”长度为32bit&#xff0c;为了让序列号不会循环&#xff0c;则最多能传输2^32B的数据&#xff0c;则最多能传输&#xff1a;2^32/1500B个报文 结果&#xff1a; 吞吐率一个周期内传输的数据/周期时间…...

【homebrew安装】踩坑爬坑教程

homebrew官网&#xff0c;有安装教程提示&#xff0c;但是在实际安装时&#xff0c;由于待下载的包的尺寸过大&#xff0c;本地git缓存尺寸、超时时间的限制&#xff0c;会报如下错误&#xff1a; error: RPC failed; curl 92 HTTP/2 stream 5 was not closed cleanly&#xf…...

反游戏学(Reludology):概念、历史、现状与展望?(豆包AI版)

李升伟 以下是关于“反游戏学&#xff08;Reludology&#xff09;&#xff1a;概念、历史、现状与展望”的综述&#xff1a; 一、概念 反游戏学&#xff08;Reludology&#xff09;是一个相对较新且不太常见的概念&#xff0c;目前尚未有统一明确的定义。一般来说&#xf…...

【C/C++语言系列】实现单例模式

1.单例模式概念 定义&#xff1a;单例模式是一种常见的设计模式&#xff0c;它可以保证系统中一个类只有一个实例&#xff0c;而且该实例易于外界访问&#xff08;一个类一个对象&#xff0c;共享这个对象&#xff09;。 条件&#xff1a; 只有1个对象易于外界访问共享这个对…...

A. Make All Equal

time limit per test 1 second memory limit per test 256 megabytes You are given a cyclic array a1,a2,…,ana1,a2,…,an. You can perform the following operation on aa at most n−1n−1 times: Let mm be the current size of aa, you can choose any two adjac…...

业务安全治理

业务安全治理 1.账号安全撞库账户盗用 2.爬虫与反爬虫3.API网关防护4.钓鱼与反制钓鱼发现钓鱼处置 5.大数据风控风控介绍 1.账号安全 撞库 撞库分为垂直撞库和水平撞库两种&#xff0c;垂直撞库是对一个账号使用多个不同的密码进行尝试&#xff0c;可以理解为暴力破解&#x…...

HelpLook VS GitBook,在线文档管理工具对比

在线文档管理工具在当今时代非常重要。随着数字化时代的到来&#xff0c;人们越来越依赖于电子文档来存储、共享和管理信息。无论是与团队合作还是与客户分享&#xff0c;人们都可以轻松地共享文档链接或通过设置权限来控制访问。在线文档管理工具的出现大大提高了工作效率和协…...

docker面经

docker面经在线链接 docker面经在线链接&#x1f517;&#xff1a; (https://h03yz7idw7.feishu.cn/wiki/N3CVwO3kMifLypkJqnic9wNynKh)...

Python 中的 Kombu 类库

Kombu 是一个用于 Python 的消息队列库&#xff0c;提供了高效、灵活的消息传递机制。它是 Celery 的核心组件之一&#xff0c;但也可以单独使用。Kombu 支持多种消息代理&#xff08;如 RabbitMQ、Redis、Amazon SQS 等&#xff09;&#xff0c;并提供了消息生产者和消费者的功…...

safepoint是什么?有什么用?

在JVM中&#xff0c;safepoint&#xff08;安全点&#xff09;是一个非常重要的概念&#xff0c;特别是在垃圾回收&#xff08;GC&#xff09;和其他需要暂停所有应用线程的操作中。 什么是safepoint Safepoint是JVM执行过程中一个特定的位置&#xff0c;在这个位置上&#x…...

axios相关知识点

一、基本概念 1、基于Promise:Axios通过Promise实现异步请求&#xff0c;避免了传统回调函数导致的“回调地狱”问题&#xff0c;使得代码更加清晰和易于维护。 2、跨平台&#xff1a;Axios既可以在浏览器中运行&#xff0c;也可以在Node.js环境中使用&#xff0c;为前后端开…...

LeetCode 面试经典150题 67.二进制求和

415.字符串相加 思路一模一样 题目&#xff1a;给你两个二进制字符串 a 和 b &#xff0c;以二进制字符串的形式返回它们的和。 eg&#xff1a; 输入a“1010” b“1011” 输出“10101” 思路&#xff1a;从右开始遍历两个字符串&#xff0c;因为右边是低位先运算。如果…...

Dell PowerEdge 网络恢复笔记

我有一台Dell的PowerEdge服务器&#xff0c;之前安装了Ubuntu 20 桌面版。突然有一天不能开机了。 故障排查 Disk Error 首先是看一下机器的正面&#xff0c;有一个非常小的液晶显示器&#xff0c;只能显示一排字。 上面显示Disk Error&#xff0c;然后看挂载的硬盘仓&#…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

Java数组Arrays操作全攻略

Arrays类的概述 Java中的Arrays类位于java.util包中&#xff0c;提供了一系列静态方法用于操作数组&#xff08;如排序、搜索、填充、比较等&#xff09;。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序&#xff08;sort&#xff09; 对数组进行升序…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解

文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...