浅谈计算机视觉新手的学习路径
浅谈计算机视觉新手的学习路径
计算机视觉是人工智能领域的一个重要分支,它的研究目标是使计算机能够理解和解释我们视觉可以看到的所有外界世界信息。对于一个计算机视觉领域的新人,学习计算机视觉大致可以分为几个步骤,包括理论基础、实际应用和常用开发库的掌握。
1. 理论基础
a. 数学基础
- 线性代数:掌握向量、矩阵运算和特征值等概念。
- 概率论:理解概率分布、贝叶斯定理和随机变量。
- 微积分:学习导数、积分和多元微积分。
b. 计算机视觉基础
- 图像处理:了解图像的基本概念,如像素、颜色空间、图像格式等。
- 特征提取:学习边缘检测、角点检测、特征点匹配等技术。
- 图像分割:掌握阈值分割、区域生长、分水岭算法等。
c. 机器学习基础
- 监督学习:理解分类、回归等任务。
- 无监督学习:学习聚类、降维技术如PCA。
- 深度学习:掌握神经网络基础,特别是卷积神经网络(CNN)。
2. 应用实践
a. 计算机视觉任务
- 物体检测与识别:使用预训练模型如YOLO, SSD进行物体检测。
- 图像分类:训练模型对图像进行分类。
- 图像分割:使用深度学习方法进行像素级的图像分割。
b. 项目实践
- 小型项目:如使用OpenCV处理图像,实现简单的图像编辑功能。
- 中型项目:开发一个基于深度学习的图像分类器。
- 大型项目:参与或发起一个涉及多模态数据(图像、视频、文本)的复杂项目。
3. 常用开发库简介
a. OpenCV
- 功能:强大的图像处理和计算机视觉库,支持多种编程语言。
- 应用:图像处理、视频分析、实时物体检测等。
b. TensorFlow
- 功能:由Google开发的开源机器学习框架,支持深度学习模型的构建和训练。
- 应用:构建和训练复杂的神经网络模型。
c. PyTorch
- 功能:由Facebook开发的开源机器学习库,特别适用于深度学习和计算机视觉。
- 应用:动态计算图,便于模型的修改和调试。
d. Keras
- 功能:用户友好的神经网络API,可以运行在TensorFlow, CNTK, 或Theano之上。
- 应用:快速实验和原型设计。
e. scikit-image
- 功能:基于Python的图像处理库,提供简单的接口和丰富的图像处理功能。
- 应用:图像预处理、图像分割、图像变换等。
4. 学习资源
- 在线课程:Coursera, edX, Udacity 提供的计算机视觉和深度学习课程。
- 书籍:《Computer Vision: Algorithms and Applications》, 《Deep Learning》。
- 研究论文:关注顶级会议如CVPR, ICCV, ECCV。
5. 社区和会议
- 参加研讨会和工作坊:如NIPS, ICML, CVPR。
- 加入在线社区:如GitHub, Stack Overflow, Reddit的计算机视觉板块。
通过上述步骤,新手可以逐步建立起计算机视觉的知识体系,并在实践中不断提升技能。
相关文章:
浅谈计算机视觉新手的学习路径
浅谈计算机视觉新手的学习路径 计算机视觉是人工智能领域的一个重要分支,它的研究目标是使计算机能够理解和解释我们视觉可以看到的所有外界世界信息。对于一个计算机视觉领域的新人,学习计算机视觉大致可以分为几个步骤,包括理论基础、实际…...

SQL编程题复习(24/9/19)
练习题 x25 10-145 查询S001学生选修而S003学生未选修的课程(MSSQL)10-146 检索出 sc表中至少选修了’C001’与’C002’课程的学生学号10-147 查询平均分高于60分的课程(MSSQL)10-148 检索C002号课程的成绩最高的二人学号…...

提前解锁 Vue 3.5 的新特性
Vue 3.5 是 Vue.js 新发布的版本,虽然没有引入重大变更,但带来了许多实用的增强功能、内部优化和性能改进。 1. 响应式系统优化 Vue 3.5 进一步优化了响应式系统的性能,并且减少内存占用。尤其在处理大型或深度嵌套的响应式数组时ÿ…...

web基础—dvwa靶场(十)XSS
XSS(DOM) 跨站点脚本(XSS)攻击是一种注入攻击,恶意脚本会被注入到可信的网站中。当攻击者使用 web 应用程序将恶意代码(通常以浏览器端脚本的形式)发送给其他最终用户时,就会发生 XSS 攻击。允许这些攻击成…...

搜索引擎onesearch3实现解释和升级到Elasticsearch v8系列(五)-聚合
聚合 聚合基于Query结果的统计,执行过程是搜索的一部分,Onesearch支持0代码构建聚合,聚合目前完全在引擎层 0代码聚合 上图是聚合的配置,包括2个pdm文档聚合统计 termsOfExt term桶聚合,统计ext,如&…...
Pandas中df常用方法介绍
目录 常用方法df.columnsdf.indexdf.valuesdf.Tdf.sort_index()df.sort_values() 案例 常用方法 df.columns df.columns 是 Pandas 中 DataFrame 对象的一个属性,用于获取 DataFrame 中的列标签(列名)。 基本语法如下: df.col…...

LabVIEW中AVI帧转图像数据
在LabVIEW中,有时需要将AVI视频文件的帧转换为图像数据进行进一步处理。下面详细讲解了如何从AVI视频提取单帧并将其转换为图像数据集群,以便与其他图像处理VI兼容。 问题背景: 用户已经拥有能够处理JPEG图像数据集群的VI,现在希…...
并发与并行的区别:深入理解Go语言中的核心概念
在编程中,并发与并行的区别往往被忽视或误解。很多开发者在谈论这两个概念时,常常把它们混为一谈,认为它们都指“多个任务同时运行”。但实际上,这种说法并不完全正确。如果我们深入探讨并发和并行的区别,会发现它不仅是词语上的不同,更是编程中非常重要的抽象层次,特别…...

小小扑克牌算法
1.定义一个扑克牌类Card: package democard; public class Card {public String suit;//表示花色public int rank;//表示牌点数Overridepublic String toString() {return "{"suit rank"}";}//实例方法,初始化牌的点数和花色public…...

【第34章】Spring Cloud之SkyWalking分布式日志
文章目录 前言一、准备1. 引入依赖 二、日志配置1. 打印追踪ID2. gRPC 导出 三、完整日志配置四、日志展示1. 前端2. 后端 总结 前言 前面已经完成了请求的链路追踪,这里我们通过SkyWalking来处理分布式日志; 场景描述:我们有三个服务消费者…...

easy-es动态索引支持
背景 很多项目目前都引入了es,由于es弥补了mysql存储及搜索查询的局限性,随着技术的不断迭代,原生的es客户端使用比较繁琐不直观,上手代价有点大,所以easy-es框架就面世了,学习成本很低,有空大…...
SWC(Speedy Web Compiler)
概述 SWC 由 Rust 编写, 既可用于编译,也可用于打包。 对于编译,它使用现代 JavaScript 功能获取 JavaScript / TypeScript 文件并输出所有主流浏览器支持的有效代码。 SWC在单线程上比 Babel 快 20 倍,在四核上快 70 倍。 简…...

【计算机网络】传输层协议UDP
目录 一、端口号1.1 端口号范围划分1.2 认识知名端口号 二、UDP协议2.1 UDP协议端格式2.2 UDP的特点2.3 UDP的缓冲区2.4 UDP使用注意事项2.5 基于UDP的应用层协议 一、端口号 传输层协议负责数据的传输,从发送端到接收端。端口号标识一个主机上进行通信的不同的应用…...

Docker+PyCharm远程调试环境隔离解决方案
DockerPyCharmMiniconda实现深度学习代码远程调试和环境隔离 本文详细介绍了如何在局域网环境下,利用Docker、PyCharm和Miniconda构建一个高效的深度学习远程调试平台。首先在服务器(server)上,通过Docker构建包含不同CUDA环境的镜…...

数字化转型的理论框架对比:从多维视角指导企业成功变革对比DPBOKIT4ITCOBITTOGAF
数字化转型的多维框架解析 在数字化时代,企业如何有效实现数字化转型已成为其生存和发展的关键问题。然而,市场上关于数字化管理的各种框架和理论并存,企业需要根据自身的需求选择最适合的指导路径。本文将通过对几个核心理论框架的对比&…...

【C++掌中宝】深入解析C++命名空间:有效管理代码的利器
文章目录 前言1. namespace 的价值2. namespace 的定义3. 命名空间的本质4. 嵌套的命名空间5. 命名空间的使用6. using 指令7. 补充结语 前言 假设这样一种情况,当一个班上有两个名叫 Zara 的学生时,为了明确区分它们,我们在使用名字之外&am…...

2024/9/21 leetcode 21.合并两个有序链表 2.两数相加
目录 21.合并两个有序链表 题目描述 题目链接 解题思路与代码 2.两数相加 题目描述 题目链接 解题思路与代码 --------------------------------------------------------------------------- 21.合并两个有序链表 题目描述 将两个升序链表合并为一个新的 升序 链表并返…...
Python学习的主要知识框架
Python的主要学习知识点非常广泛且深入,但我可以为您概括一些核心的学习领域,帮助您系统地掌握Python编程。以下是Python学习的主要知识框架: 1. Python基础语法 数据类型:整数、浮点数、字符串、布尔值、列表、元组、字典、集合…...
LLaMA-Factory 使用 alpaca 格式的数据集
LLaMA-Factory 使用 alpaca 格式的数据集 flyfish alpaca 格式最初与Stanford大学的一个研究项目相关联,该项目旨在通过少量高质量的数据来微调大型语言模型。它受到了Alpaca模型(一种基于LLaMA的指令跟随模型)的影响,该模型是在…...

【Mysql】Mysql数据库基础
1.❤️❤️前言~🥳🎉🎉🎉 Hello, Hello~ 亲爱的朋友们👋👋,这里是E绵绵呀✍️✍️。 如果你喜欢这篇文章,请别吝啬你的点赞❤️❤️和收藏📖📖。如果你对我的…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...