Java之线程篇四
目录
volatile关键字
volatile保证内存可见性
代码示例
代码示例2-(+volatile)
volatile不保证原子性
synchronized保证内存可见性
wait()和notify()
wait()方法
notify()
理解notify()和notifyAll()
wait和sleep的对比
volatile关键字
volatile保证内存可见性
volatile 修饰的变量, 能够保证 "内存可见性".
代码在写入 volatile 修饰的变量的时候:
改变线程工作内存中volatile变量副本的值
将改变后的副本的值从工作内存刷新到主内存
代码在读取 volatile 修饰的变量的时候:
从主内存中读取volatile变量的最新值到线程的工作内存中
从工作内存中读取volatile变量的副本
加上 volatile , 强制读写内存. 速度是慢了, 但是数据变的更准确了。
代码示例
public class Demo13 {private static int isQuit=0;public static void main(String[] args) {Thread t1=new Thread(()->{while(isQuit==0){}System.out.println("t1 退出");});t1.start();Thread t2=new Thread(()->{System.out.println("请输入 isQuit:");Scanner scanner=new Scanner(System.in);isQuit=scanner.nextInt();});t2.start();}
}
运行结果
通过jconsole观察,会看到线程t1处于RUNNABLE状态。
t1 读的是自己工作内存中的内容 .当 t2 对 flag 变量进行修改 , 此时 t1 感知不到 flag 的变化 .
原因解释:
1) load 读取内存中isQuit的值到寄存器中.
2)通过cmp 指令比较寄存器的值是否是0.决定是否要继续循环.
由于这个循环,循环速度飞快.短时间内,就会进行大量的循环.也就是进行大量的load和cmp 操作.此时,编译器/JVM就发现了,虽然进行了这么多次load,但是 load 出来的结果都一样的.并且, load 操作又非常费时间,一次load花的时间相当于上万次cmp 了.
所以编译器就做了一个大胆的决定~~只是第一次循环的时候才读了内存.后续都不再读内存了,而是直接从寄存器中,取出isQuit的值了.
代码示例2-(+volatile)
public class Demo13 {private static volatile int isQuit=0;public static void main(String[] args) {Thread t1=new Thread(()->{while(isQuit==0){}System.out.println("t1 退出");});t1.start();Thread t2=new Thread(()->{System.out.println("请输入 isQuit:");Scanner scanner=new Scanner(System.in);isQuit=scanner.nextInt();});t2.start();}
}
运行结果
代码示例3-(+sleep)
public class Demo13 {private static int isQuit=0;public static void main(String[] args) {Thread t1=new Thread(()->{while(isQuit==0){try {Thread.sleep(1000);} catch (InterruptedException e) {throw new RuntimeException(e);}}System.out.println("t1 退出");});t1.start();Thread t2=new Thread(()->{System.out.println("请输入 isQuit:");Scanner scanner=new Scanner(System.in);isQuit=scanner.nextInt();});t2.start();}
}
运行结果
volatile不保证原子性
代码示例
class Counter {volatile public int count = 0;void increase() {count++;}
}public class Demo13 {public static void main(String[] args) throws InterruptedException {final Counter counter = new Counter();Thread t1 = new Thread(() -> {for (int i = 0; i < 50000; i++) {counter.increase();}});Thread t2 = new Thread(() -> {for (int i = 0; i < 50000; i++) {counter.increase();}});t1.start();t2.start();t1.join();t2.join();System.out.println(counter.count);}
}
运行结果
我们会发现,加上volatile以后,依旧不是线程安全的。
synchronized保证内存可见性
代码示例
class Counter {public int flag = 0;
}public class Demo13 {public static void main(String[] args) {Counter counter = new Counter();Thread t1 = new Thread(() -> {while (true) {synchronized (counter) {if (counter.flag != 0) {break;}}}System.out.println("循环结束!");});Thread t2 = new Thread(() -> {Scanner scanner = new Scanner(System.in);System.out.println("输入一个整数:");counter.flag = scanner.nextInt();});t1.start();t2.start();}
}
运行结果
wait()和notify()
wait()方法
wait 做的事情:
使当前执行代码的线程进行等待. (把线程放到等待队列中)
释放当前的锁
满足一定条件时被唤醒, 重新尝试获取这个锁.
wait 要搭配 synchronized 来使用. 脱离 synchronized 使用 wait 会直接抛出异常.
代码示例
public class Demo14 {public static void main(String[] args) throws InterruptedException {Object object = new Object();synchronized (object) {System.out.println("wait 之前");// 把 wait 要放到 synchronized 里面来调用. 保证确实是拿到锁了的.object.wait();System.out.println("wait 之后");}}
}
运行结果
此时object就会一直进行wait,当然我们肯定不想让程序一直等待下去,下面将介绍notify()来唤醒它。
notify()
notify 方法是唤醒等待的线程.
方法notify()也要在同步方法或同步块中调用,该方法是用来通知那些可能等待该对象的对象锁的其它线程,对其发出通知notify,并使它们重新获取该对象的对象锁。
如果有多个线程等待,则有线程调度器随机挑选出一个呈 wait 状态的线程。(并没有 "先来后到"),在notify()方法后,当前线程不会马上释放该对象锁,要等到执行notify()方法的线程将程序执行完,也就是退出同步代码块之后才会释放对象锁。
代码示例
public class Demo15 {public static void main(String[] args) {Object object = new Object();Thread t1 = new Thread(() -> {synchronized (object) {System.out.println("wait 之前");try {object.wait();
// object.wait(5000);//也可以指定等待时间后自动唤醒} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("wait 之后");}});Thread t2 = new Thread(() -> {try {Thread.sleep(3000);} catch (InterruptedException e) {throw new RuntimeException(e);}synchronized (object) {System.out.println("进行通知");object.notify();}});t1.start();t2.start();}
}
运行结果
notifyAll()
class WaitTask implements Runnable {private Object locker;public WaitTask(Object locker) {this.locker = locker;}@Overridepublic void run() {synchronized (locker) {while (true) {try {System.out.println("wait 开始");locker.wait();System.out.println("wait 结束");} catch (InterruptedException e) {e.printStackTrace();}}}}
}
class NotifyTask implements Runnable {private Object locker;public NotifyTask(Object locker) {this.locker = locker;}@Overridepublic void run() {synchronized (locker) {System.out.println("notify 开始");locker.notifyAll();System.out.println("notify 结束");}}
}public class Demo16 {public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(new WaitTask(locker));Thread t3 = new Thread(new WaitTask(locker));Thread t4 = new Thread(new WaitTask(locker));Thread t2 = new Thread(new NotifyTask(locker));t1.start();t2.start();t3.start();Thread.sleep(5000);t4.start();}
}
运行结果
注意: 虽然是同时唤醒 3 个线程, 但是这 3 个线程需要竞争锁. 所以并不是同时执行, 而仍然是有先有后的执行.
理解notify()和notifyAll()
notifyAll 一下全都唤醒, 需要这些线程重新竞争锁.
wait和sleep的对比
1. wait 需要搭配 synchronized 使用 . sleep 不需要 .2. wait 是 Object 的方法 sleep 是 Thread 的静态方法 .
相关文章:

Java之线程篇四
目录 volatile关键字 volatile保证内存可见性 代码示例 代码示例2-(volatile) volatile不保证原子性 synchronized保证内存可见性 wait()和notify() wait()方法 notify() 理解notify()和notifyAll() wait和sleep的对比 volatile关键字 volati…...

计算机毕业设计之:基于微信小程序的校园流浪猫收养系统
博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…...
SpringBoot:关于Redis的配置失效(版本问题)
我们使用redis时发现yaml配置中的redis相关配置不生效,后面发现将配置修改甚至删除所有相关redis的配置,springboot依然能使用redis里面默认的db0并且不报错。上网查阅了一些文章,也都没有解决今天分享下,我的处理方法, SpringBo…...
halcon 快速定义字典
定义一个名为params的字典 Params : dict{} 等价于用 create_dict (Params ) 为字典添加键值对,在halcon中箭只能是字符串,值可以是任何类型的obj或者tuple Params.remove_outer_edges : true Params.max_gap : 150 等价于用 set_dict_object (true,…...

Sublime text3怎么关闭提示更新
问题 sublime text 3有新版本后,会不停地在每次启动后弹窗提示更新版本 第一步 软件安装之前,切记是软件安装之前!!!需要在hosts中添加以下内容(屏蔽官网联网检测):hosts的位置一般在C:\Windows\System32\drivers\etc…...
生成式语言模型技术栈
生成式语言模型的最新技术栈正在快速发展,尤其是随着大规模预训练模型(LLMs)和生成式AI的应用不断扩展。以下是当今最前沿的生成式语言模型技术栈,涵盖从模型开发到优化、推理和部署的各个环节。 1. 基础模型开发 基础模型开发包…...

进程分析工具Process Explorer使用
进程分析工具Process Explorer使用 Process Explorer让使用者能了解看不到的在后台执行的处理程序,能显示目前已经载入哪些模块,分别是正在被哪些程序使用着,还可显示这些程序所调用的DLL进程,以及他们所打开的句柄。Process Expl…...
vue 中如何实现鼠标拖动出发滚动条的跟随移动?
使用场景 在做弹窗、表单或 tab 切换需求的时候,有时候因为内容过长会导致出现滚动条,但是只能拖动滚动条时会导致操作不便,我们会希望实现通过拖动内容区实现滚动条的滑动。这样操作就会简单多了。 实现思路 如果要实现鼠标辅助触发滚动条…...

【Java EE】文件IO
Author:MTingle major:人工智能 --------------------------------------- Build your hopes like a tower! 目录 一、文件是什么? 二、针对文件系统操作的API 1.文件路径,文件名,文件是否存在 2. 创建文件 3.删除文件&#…...
使用 React、Material-UI、Spring、MySQL、MyBatis 以及高德 API 模拟实时位置信息
要使用 React、Material-UI、Spring、MySQL、MyBatis 以及高德 API 模拟实时位置信息,你可以按以下步骤来实现: 目录 1. 前端 (React Material-UI) 2. 后端 (Spring Boot MyBatis MySQL) 3. 模拟实时位置数据 4. 前后端联调 1. 前端 (React Mat…...
UniApp一句话经验: px -> rpx动态转换和动态元素区域的获取
px->rpx转换 在多终端条件下,什么devicePixelRatio,upx2px都是不靠谱的,最直接的是这样: const { screenWidth } uni.getSystemInfoSync()const pixelUnit screenWidth / 750 // rpx->px比例基数 动态元素区域获取 多终…...

Python基于flask框架的智能停车场车位系统 数据可视化分析系统fyfc81
目录 技术栈和环境说明解决的思路具体实现截图系统设计python语言django框架介绍flask框架介绍性能/安全/负载方面可行性分析论证python-flask核心代码部分展示python-django核心代码部分展示技术路线操作可行性详细视频演示源码获取 技术栈和环境说明 结合用户的使用需求&…...

海外服务器哪个速度最快且性能稳定
海外服务器的速度与性能稳定性受多种因素影响,包括地理位置、网络架构、基础设施质量以及用户网络路径等。在众多选择中,几个特定地区的服务器因其卓越表现而备受推崇。 首先,美国硅谷(加利福尼亚州)与纽约的服务器以其技术领先、网络连接稳定…...

C/C++通过CLion2024进行Linux远程开发保姆级教学
目前来说,对Linux远程开发支持相对比较好的也就是Clion和VSCode了,这两个其实对于C和C语言开发都很友好,大可不必过于纠结使用那个,至于VS和QtCreator,前者太过重量级了,后者更是不用说,主要用于…...
工程师 - 如何安装Windows 终端
Windows 终端是一款适用于 Windows 的现代命令行应用程序,支持多个终端会话,包括 Command Prompt、PowerShell 和 Windows Subsystem for Linux (WSL)。它具有标签式界面、可定制的设置(如主题和按键绑定)、改进的文本渲染以及对 …...
UniApp 从Vue2升级为Vue3需要注意哪些方面
Vue官方已经发布了Vue3,Vue2不再维护,也在建议大家都迁移到Vue3,所以Vue2终会被淘汰。 那么UniApp 从Vue2升级为Vue3需要注意哪些方面: 1、main.js 下面请看创建应用实例Vue2与Vue3的不同: Vue2的写法:…...
前端面试CSS常见题目
1. CSS 选择器的优先级 (Specificity) 面试官通常会问你如何计算 CSS 选择器的优先级,这对于避免样式冲突、提高代码可维护性很重要。 优先级计算规则: !important 优先级最高。内联样式(例如:<div style"color: red;&…...
408算法题leetcode--第10天
643. 子数组最大平均数 I 643. 子数组最大平均数 I思路:滑动窗口时间:O(n);空间:O(1) class Solution { public:double findMaxAverage(vector<int>& nums, int k) {double ret 0, temp 0;size_t size nums.size()…...

13年计算机考研408-数据结构
解析: 这个降序链表不影响时间复杂度,因为是链表,所以你想要升序就使用头插法,你想要降序就使用尾插法。 然后我们来分析一下最坏的情况是什么样的。 因为m和n都是两个有序的升序序列。 如果刚好m的最大值小于n的最小值࿰…...

跨平台开发新视角:利用Android WebView实现Web内容的原生体验
在移动应用开发领域,跨平台解决方案一直是一个热门话题。开发者们不断寻求能够同时在iOS和Android平台上提供一致用户体验的方法。而Android的WebView组件,作为一个强大的工具,允许开发者在Android应用中嵌入Web内容,为用户提供接…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...