当前位置: 首页 > news >正文

自动登录 RPA 的进阶:滑块验证的巧妙实现

​在RPA的众多应用场景的探索中,自动登录是一个至关重要的环节,它为后续的自动化操作奠定了基础。然而,当我们面对滑块验证这一常见的挑战时,常常会感到困惑和无从下手。本文就来分享自动登录RPA的进阶----滑块验证如何实现。

在分享自动登录RPA的进阶之前,我们先来了解一个工具包–ddddocr

一、ddddocr:验证码识别的利器

ddddocr是一个功能强大的验证码识别工具包,专门用于处理各种复杂的验证码,包括滑块验证码、文字点选、算术、字母、数字等类型。它基于深度学习技术,能够准确地识别图像中的滑块位置,并提供相应的操作指令。

二、使用ddddocr实现滑块验证

在先前的探索中,如《揭秘AI+RPA:CSDN热榜数据抓取RPA与AI融合之道-CSDN博客》和《揭秘AI+RPA:CSDN 自动登录 RPA 的实现之道-CSDN博客》的所述,我们可以成功获取到谷歌浏览器的客户端。

    option = ChromiumOptions().set_paths(local_port=port).set_argument('--start-maximized')client = ChromiumPage(addr_or_opts=option, timeout=10)

本文以知乎账号密码登录时的滑块验证为例,展示如何利用 ddddocr 来攻克这一难题。

1. 寻找拖拽的iframe标签

首先,我们需要在页面中找到拖拽滑块的 iframe 标签,这是后续操作的基础。

	iframe = client.get_frame(1)sleep(1)

2. 获取完整图片

接下来,获取包含滑块背景的完整图片。通过定位完整图片的元素,并获取其图片的 URL,然后使用 requests 库获取图片数据。

	image_ele = iframe.ele('@id:yidun_bg-img')image_url = image_ele.attr('src')response = requests.get(image_url)if response.status_code == 200:image_data = response.contentelse:raise Exception('Failed to retrieve the image')

3. 获取缺口图片

和2一样的方法,获取带有缺口的图片数据。

	gap_image_ele = iframe.ele('@id:yidun_jigsaw')gap_image_url = image_ele.attr('src')response = requests.get(image_url)if response.status_code == 200:gap_image_data = response.contentelse:raise Exception('Failed to retrieve the gap image')

4. 利用ddddocr工具包计算缺口的位置

这里是很关键的一步,使用 ddddocr 工具包的强大功能来计算缺口的准确位置。

	slider_ocr = ddddocr.DdddOcr(det=True,show_ad=False)slider_ocr.slide_match(gap_image_data, image_data)target = result.get('target')

让我们来分析一下slide_match方法,在我们的例子中,走的是else分支,所以simple_target对象先忽略。
该方法中有两个核心方法cv2.matchTemplate和cv2.minMaxLoc,cv2.matchTemplate使用了相关系数归一化方法进行目标图像和背景图像的匹配,而cv2.minMaxLoc方法用于在cv2.matchTemplate方法匹配的结果中获取最小、最大匹配值以及位置。

    def slide_match(self, target_bytes: bytes = None, background_bytes: bytes = None, simple_target: bool = False,flag: bool = False):if not simple_target:……# 会走elseelse:target = cv2.imdecode(np.frombuffer(target_bytes, np.uint8), cv2.IMREAD_ANYCOLOR)target_y = 0target_x = 0background = cv2.imdecode(np.frombuffer(background_bytes, np.uint8), cv2.IMREAD_ANYCOLOR)background = cv2.Canny(background, 100, 200)target = cv2.Canny(target, 100, 200)background = cv2.cvtColor(background, cv2.COLOR_GRAY2RGB)target = cv2.cvtColor(target, cv2.COLOR_GRAY2RGB)# 核心方法1,使用相关系数归一化方法进行目标图像和背景图像的匹配。# res是一个二维数组,大小与背景图像大小一致,每个位置表示目标图像在该位置与背景图像的匹配程度,范围是(-1, 1)res = cv2.matchTemplate(background, target, cv2.TM_CCOEFF_NORMED)# 核心方法2,通过minMaxLoc获取最小、最大匹配值以及位置min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)h, w = target.shape[:2]# 图像坐标系,通常以左上角为原点,向右为 x 轴正方向,向下为 y 轴正方向。bottom_right = (max_loc[0] + w, max_loc[1] + h)return {"target_y": target_y,"target": [int(max_loc[0]), int(max_loc[1]), int(bottom_right[0]), int(bottom_right[1])]}

5. 计算滑块滑动的轨迹

由slide_match方法可知,target是一个对象。target的key对应的value是一个list,分别对应最大匹配位置的坐标,以及从该坐标开始的h * w的区域的右下角的坐标。即背景图像缺失的图像的x轴的坐标点为target[0]。

有了target[0],我们就可以利用高中物理学到的匀加速运动的位移公式和速度公式,计算出滑动从起点到target[0]滑动的轨迹点。

让我们先来回顾下高中物理中的这些公式

  • 速度公式
    v = v 0 + a t v = v_0 + at v=v0+at
    其中是v末速度,是v0是初速度,a是加速度,t是时间。

  • 位移公式
    s = v 0 t + 1 2 a t 2 s = v_0t + \frac{1}{2}at^2 s=v0t+21at2
    其中s是位移。

以下是公式的代码实现。

    v, t, acc_dis = 0, 0.5, 0plus = []while acc_dis < distance:if acc_dis < mid:a = round(random.uniform(1.0, 2.0), 1)else:a = -round(random.uniform(1.0, 2.0), 1)s = v * t + 0.5 * a * (t ** 2)v = v + a * tacc_dis += splus.append(round(s))

6. 让RPA模拟人的动作,移动滑块到指定位置

最后一步,让 RPA 模拟人类的动作,将滑块移动到指定位置。

	move_btn = iframe.ele('@class:yidun_control')iframe.actions.hold(move_btn)for track in plus:iframe.actions.move(offset_x=track,# y轴的偏移,可以指定随机值offset_y=round(random.uniform(1, 10), 0),duration=0.1)time.sleep(0.1)iframe.actions.release(move_btn)

三、总结

在 RPA 的探索中,自动登录是一个关键环节,而滑块验证则是一个常见的挑战。本文通过使用 ddddocr 工具包,有效地解决了滑块验证问题,实现自动登录 RPA 的进阶。当然,在实际应用场景中,我们还需要根据具体的情况进行调整和优化,以确保 RPA 程序的稳定性和可靠性。

相关文章:

自动登录 RPA 的进阶:滑块验证的巧妙实现

​在RPA的众多应用场景的探索中&#xff0c;自动登录是一个至关重要的环节&#xff0c;它为后续的自动化操作奠定了基础。然而&#xff0c;当我们面对滑块验证这一常见的挑战时&#xff0c;常常会感到困惑和无从下手。本文就来分享自动登录RPA的进阶----滑块验证如何实现。 在…...

Flask-WTF的使用

组织一个 Flask 项目通常需要遵循一定的结构&#xff0c;以便代码清晰、可维护。下面是一个典型的 Flask 项目结构&#xff1a; my_flask_app/ │ ├── app/ │ ├── __init__.py │ ├── models.py │ ├── views.py │ ├── forms.py │ ├── templat…...

Docker 进入容器并运行命令的方法

目录 理解 Docker 容器的基本概念 使用 docker exec 进入运行中的容器 基本用法 常用选项解析 选项详解 实际案例演示 1. 进入容器的交互式 Shell 2. 在容器中运行单个命令 3. 以指定用户运行命令 4. 设置环境变量并运行命令 5. 指定工作目录 使用 docker attach 附…...

2024“华为杯”中国研究生数学建模竞赛(E题)深度剖析_数学建模完整过程+详细思路+代码全解析

问题1详细解答过程 (1) 交通流参数统计 数据预处理 数据读取&#xff1a; 从四个视频观测点提取交通流数据&#xff0c;包括每个时间段内的车流量、车速和车道占用率等。 交通流参数计算 3. 计算流量 (Q)&#xff1a; Q ( t ) N ( t ) Δ t Q(t) \frac{N(t)}{\Delta t} Q…...

伊犁云计算22-1 apache 安装rhel8

1 局域网网络必须通 2 yum 必须搭建成功 3 apache 必须安装 开干 要用su 用户来访问 一看httpd 组件安装完毕 到这里就是测试成功了 如何修改主页的目录 网站目录默认保存在/var/WWW/HTML 我希望改变/home/www 122 127 167 行要改...

概率论原理精解【13】

文章目录 在度量空间中&#xff0c;连续映射概述一、度量空间与距离函数二、连续映射的定义三、连续映射的等价定义四、连续映射的性质五、应用与例子 球形邻域刻画一、球形邻域的定义二、连续映射的球形邻域刻画三、等价性证明四、应用与例子 将度量空间上的连续映射推广到拓扑…...

年度巨献 | OpenCSG开源最大中文合成数据集Chinese Cosmopedia

01 背景 近年来&#xff0c;生成式语言模型&#xff08;GLM&#xff09;的飞速发展正在重塑人工智能领域&#xff0c;尤其是在自然语言处理、内容创作和智能客服等领域展现出巨大潜力。然而&#xff0c;大多数领先的语言模型主要依赖于英文数据集进行训练&#xff0c;中文数据…...

Mac 上,终端如何开启 proxy

文章目录 为什么要这么做前提步骤查看 port查看代理的port配置 bash测试 为什么要这么做 mac 上的终端比较孤僻吧&#xff0c;虽然开了&#xff0c;但是终端并不走&#x1fa9c;…产生的现象就是&#xff0c;浏览器可以访问&#x1f30d;&#xff0c;但是终端不可以访问&#…...

Linux中的进程入门

冯诺依曼体系结构 操作系统(Operator System) 进程控制块&#xff08;PCB&#xff09; struct task_struct{//该进程的所有属性//该进程对应的代码和属性地址struct task_struct* next; }; struct task_struct 内核结构体——>创建内核结构体对象(task_struct&#xff09;…...

Redis面试真题总结(三)

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 什么是缓存雪崩&#xff1f;该如何解决&#xff1f; 缓存雪崩是指…...

ARM/Linux嵌入式面经(三三):大疆

嵌入式工程师考察主要蕴含:C/C++,处理器的架构,操作系统(linux或嵌入式实时操作系统),常见硬件接口协议/总线,文件存储系统等几方面 文章目录 1)C/C++static作用,变量加入static以后在内存中存储位置的变化。static的作用变量加入static后在内存中存储位置的变化面试官…...

《DevOps实践指南》笔记-Part 2

一篇文章显得略长&#xff0c;本文对应第3-4章。前言、第1-2章请参考Part 1&#xff1b;第5-6章、附录、认证考试、参考资源等内容&#xff0c;请参考Part 3。 流动的技术实践 持续交付&#xff1a;降低在生产环境中部署和发布变更的风险。包括&#xff1a;打好自动化部署流水…...

树莓派智能语音助手实现音乐播放

树莓派语音助手从诞生的第一天开始&#xff0c;我就想着让它能像小爱音箱一样&#xff0c;可以语音控制播放音乐。经过这些日子的倒腾&#xff0c;今天终于实现了。 接下里&#xff0c;和大家分享下我的实现方法&#xff1a;首先音乐播放模块用的是我在上一篇博文写的《用sound…...

【sgCreateCallAPIFunctionParam】自定义小工具:敏捷开发→调用接口方法参数生成工具

<template><div :class"$options.name" class"sgDevTool"><sgHead /><div class"sg-container"><div class"sg-start"><div style"margin-bottom: 10px">参数列表[逗号模式]<el-too…...

完整版:NacosDocker 安装

第一步&#xff1a;先直接通过命令安装 Nacos docker run --name nacos2.2.3 -d -p 8848:8848 -e MODEstandalone f151dab7a111 第二步&#xff1a;创建 Docker 挂载目录 # 创建 log 目录 mkdir -p /root/nacos 第三步&#xff1a;将 Docker 容器的文件复制到挂载目录中 …...

mysql RR是否会导致幻读?

除了rr级别的当前读&#xff0c;都会幻读 mysql不同隔离级别&#xff1a; 而对于RC级别的语句级快照和RR级别的事务级快照的之间的区别&#xff0c;其实是由read_view生成的时机来实现的。 RC级别在执行语句时&#xff0c;会先关闭原来的read_view&#xff0c;重新生成新的r…...

一篇进阶Python深入理解函数之高阶函数与函数式编程

当我们深入探讨了函数的作用域与闭包,了解到函数不仅是代码的执行单元,还能通过闭包完成数据的封装与保护.接下来,我们将进一步挖掘函数的强大特性,尤其是高阶函数与函数式编程,帮助你更全面地理解 Python 中函数的特性与应用. 高阶函数 高阶函数是指接受一个或多个函数作为参…...

python中Web开发框架的使用

Python 的 Web 开发框架种类繁多&#xff0c;常见的有 Django 和 Flask 这两个框架。它们各有优点&#xff0c;适合不同类型的 Web 应用开发需求。下面&#xff0c;我将详细介绍这两大主流框架的使用方法&#xff0c;让你快速上手 Python 的 Web 开发。 1. Django Django 是一…...

【AI视频】Runway:Gen-2 运镜详解

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AI视频 | Runway 文章目录 &#x1f4af;前言&#x1f4af;Camera Control&#xff08;运镜&#xff09;&#x1f4af;Camera Control功能测试Horizonta&#xff08;左右平移&#xff09;Vertical&#xff08;上下平移&#xff0…...

Python “函数” ——Python面试100道实战题目练习,巩固知识、检查技术、成功就业

本文主要是作为Python中函数的一些题目&#xff0c;方便学习完Python的函数之后进行一些知识检验&#xff0c;感兴趣的小伙伴可以试一试&#xff0c;含选择题、判断题、实战题、填空题&#xff0c;答案在第五章。 在做题之前可以先学习或者温习一下Python的函数&#xff0c;推荐…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...

flow_controllers

关键点&#xff1a; 流控制器类型&#xff1a; 同步&#xff08;Sync&#xff09;&#xff1a;发布操作会阻塞&#xff0c;直到数据被确认发送。异步&#xff08;Async&#xff09;&#xff1a;发布操作非阻塞&#xff0c;数据发送由后台线程处理。纯同步&#xff08;PureSync…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...