自动登录 RPA 的进阶:滑块验证的巧妙实现
在RPA的众多应用场景的探索中,自动登录是一个至关重要的环节,它为后续的自动化操作奠定了基础。然而,当我们面对滑块验证这一常见的挑战时,常常会感到困惑和无从下手。本文就来分享自动登录RPA的进阶----滑块验证如何实现。
在分享自动登录RPA的进阶之前,我们先来了解一个工具包–ddddocr
一、ddddocr:验证码识别的利器
ddddocr是一个功能强大的验证码识别工具包,专门用于处理各种复杂的验证码,包括滑块验证码、文字点选、算术、字母、数字等类型。它基于深度学习技术,能够准确地识别图像中的滑块位置,并提供相应的操作指令。
二、使用ddddocr实现滑块验证
在先前的探索中,如《揭秘AI+RPA:CSDN热榜数据抓取RPA与AI融合之道-CSDN博客》和《揭秘AI+RPA:CSDN 自动登录 RPA 的实现之道-CSDN博客》的所述,我们可以成功获取到谷歌浏览器的客户端。
option = ChromiumOptions().set_paths(local_port=port).set_argument('--start-maximized')client = ChromiumPage(addr_or_opts=option, timeout=10)
本文以知乎账号密码登录时的滑块验证为例,展示如何利用 ddddocr 来攻克这一难题。
1. 寻找拖拽的iframe标签
首先,我们需要在页面中找到拖拽滑块的 iframe 标签,这是后续操作的基础。
iframe = client.get_frame(1)sleep(1)
2. 获取完整图片
接下来,获取包含滑块背景的完整图片。通过定位完整图片的元素,并获取其图片的 URL,然后使用 requests 库获取图片数据。
image_ele = iframe.ele('@id:yidun_bg-img')image_url = image_ele.attr('src')response = requests.get(image_url)if response.status_code == 200:image_data = response.contentelse:raise Exception('Failed to retrieve the image')
3. 获取缺口图片
和2一样的方法,获取带有缺口的图片数据。
gap_image_ele = iframe.ele('@id:yidun_jigsaw')gap_image_url = image_ele.attr('src')response = requests.get(image_url)if response.status_code == 200:gap_image_data = response.contentelse:raise Exception('Failed to retrieve the gap image')
4. 利用ddddocr工具包计算缺口的位置
这里是很关键的一步,使用 ddddocr 工具包的强大功能来计算缺口的准确位置。
slider_ocr = ddddocr.DdddOcr(det=True,show_ad=False)slider_ocr.slide_match(gap_image_data, image_data)target = result.get('target')
让我们来分析一下slide_match方法,在我们的例子中,走的是else分支,所以simple_target对象先忽略。
该方法中有两个核心方法cv2.matchTemplate和cv2.minMaxLoc,cv2.matchTemplate使用了相关系数归一化方法进行目标图像和背景图像的匹配,而cv2.minMaxLoc方法用于在cv2.matchTemplate方法匹配的结果中获取最小、最大匹配值以及位置。
def slide_match(self, target_bytes: bytes = None, background_bytes: bytes = None, simple_target: bool = False,flag: bool = False):if not simple_target:……# 会走elseelse:target = cv2.imdecode(np.frombuffer(target_bytes, np.uint8), cv2.IMREAD_ANYCOLOR)target_y = 0target_x = 0background = cv2.imdecode(np.frombuffer(background_bytes, np.uint8), cv2.IMREAD_ANYCOLOR)background = cv2.Canny(background, 100, 200)target = cv2.Canny(target, 100, 200)background = cv2.cvtColor(background, cv2.COLOR_GRAY2RGB)target = cv2.cvtColor(target, cv2.COLOR_GRAY2RGB)# 核心方法1,使用相关系数归一化方法进行目标图像和背景图像的匹配。# res是一个二维数组,大小与背景图像大小一致,每个位置表示目标图像在该位置与背景图像的匹配程度,范围是(-1, 1)res = cv2.matchTemplate(background, target, cv2.TM_CCOEFF_NORMED)# 核心方法2,通过minMaxLoc获取最小、最大匹配值以及位置min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)h, w = target.shape[:2]# 图像坐标系,通常以左上角为原点,向右为 x 轴正方向,向下为 y 轴正方向。bottom_right = (max_loc[0] + w, max_loc[1] + h)return {"target_y": target_y,"target": [int(max_loc[0]), int(max_loc[1]), int(bottom_right[0]), int(bottom_right[1])]}
5. 计算滑块滑动的轨迹
由slide_match方法可知,target是一个对象。target的key对应的value是一个list,分别对应最大匹配位置的坐标,以及从该坐标开始的h * w的区域的右下角的坐标。即背景图像缺失的图像的x轴的坐标点为target[0]。
有了target[0],我们就可以利用高中物理学到的匀加速运动的位移公式和速度公式,计算出滑动从起点到target[0]滑动的轨迹点。
让我们先来回顾下高中物理中的这些公式
-
速度公式
v = v 0 + a t v = v_0 + at v=v0+at
其中是v末速度,是v0是初速度,a是加速度,t是时间。 -
位移公式
s = v 0 t + 1 2 a t 2 s = v_0t + \frac{1}{2}at^2 s=v0t+21at2
其中s是位移。
以下是公式的代码实现。
v, t, acc_dis = 0, 0.5, 0plus = []while acc_dis < distance:if acc_dis < mid:a = round(random.uniform(1.0, 2.0), 1)else:a = -round(random.uniform(1.0, 2.0), 1)s = v * t + 0.5 * a * (t ** 2)v = v + a * tacc_dis += splus.append(round(s))
6. 让RPA模拟人的动作,移动滑块到指定位置
最后一步,让 RPA 模拟人类的动作,将滑块移动到指定位置。
move_btn = iframe.ele('@class:yidun_control')iframe.actions.hold(move_btn)for track in plus:iframe.actions.move(offset_x=track,# y轴的偏移,可以指定随机值offset_y=round(random.uniform(1, 10), 0),duration=0.1)time.sleep(0.1)iframe.actions.release(move_btn)
三、总结
在 RPA 的探索中,自动登录是一个关键环节,而滑块验证则是一个常见的挑战。本文通过使用 ddddocr 工具包,有效地解决了滑块验证问题,实现自动登录 RPA 的进阶。当然,在实际应用场景中,我们还需要根据具体的情况进行调整和优化,以确保 RPA 程序的稳定性和可靠性。
相关文章:
自动登录 RPA 的进阶:滑块验证的巧妙实现
在RPA的众多应用场景的探索中,自动登录是一个至关重要的环节,它为后续的自动化操作奠定了基础。然而,当我们面对滑块验证这一常见的挑战时,常常会感到困惑和无从下手。本文就来分享自动登录RPA的进阶----滑块验证如何实现。 在…...
Flask-WTF的使用
组织一个 Flask 项目通常需要遵循一定的结构,以便代码清晰、可维护。下面是一个典型的 Flask 项目结构: my_flask_app/ │ ├── app/ │ ├── __init__.py │ ├── models.py │ ├── views.py │ ├── forms.py │ ├── templat…...
Docker 进入容器并运行命令的方法
目录 理解 Docker 容器的基本概念 使用 docker exec 进入运行中的容器 基本用法 常用选项解析 选项详解 实际案例演示 1. 进入容器的交互式 Shell 2. 在容器中运行单个命令 3. 以指定用户运行命令 4. 设置环境变量并运行命令 5. 指定工作目录 使用 docker attach 附…...
2024“华为杯”中国研究生数学建模竞赛(E题)深度剖析_数学建模完整过程+详细思路+代码全解析
问题1详细解答过程 (1) 交通流参数统计 数据预处理 数据读取: 从四个视频观测点提取交通流数据,包括每个时间段内的车流量、车速和车道占用率等。 交通流参数计算 3. 计算流量 (Q): Q ( t ) N ( t ) Δ t Q(t) \frac{N(t)}{\Delta t} Q…...
伊犁云计算22-1 apache 安装rhel8
1 局域网网络必须通 2 yum 必须搭建成功 3 apache 必须安装 开干 要用su 用户来访问 一看httpd 组件安装完毕 到这里就是测试成功了 如何修改主页的目录 网站目录默认保存在/var/WWW/HTML 我希望改变/home/www 122 127 167 行要改...
概率论原理精解【13】
文章目录 在度量空间中,连续映射概述一、度量空间与距离函数二、连续映射的定义三、连续映射的等价定义四、连续映射的性质五、应用与例子 球形邻域刻画一、球形邻域的定义二、连续映射的球形邻域刻画三、等价性证明四、应用与例子 将度量空间上的连续映射推广到拓扑…...
年度巨献 | OpenCSG开源最大中文合成数据集Chinese Cosmopedia
01 背景 近年来,生成式语言模型(GLM)的飞速发展正在重塑人工智能领域,尤其是在自然语言处理、内容创作和智能客服等领域展现出巨大潜力。然而,大多数领先的语言模型主要依赖于英文数据集进行训练,中文数据…...
Mac 上,终端如何开启 proxy
文章目录 为什么要这么做前提步骤查看 port查看代理的port配置 bash测试 为什么要这么做 mac 上的终端比较孤僻吧,虽然开了,但是终端并不走🪜…产生的现象就是,浏览器可以访问🌍,但是终端不可以访问&#…...
Linux中的进程入门
冯诺依曼体系结构 操作系统(Operator System) 进程控制块(PCB) struct task_struct{//该进程的所有属性//该进程对应的代码和属性地址struct task_struct* next; }; struct task_struct 内核结构体——>创建内核结构体对象(task_struct)…...
Redis面试真题总结(三)
文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 什么是缓存雪崩?该如何解决? 缓存雪崩是指…...
ARM/Linux嵌入式面经(三三):大疆
嵌入式工程师考察主要蕴含:C/C++,处理器的架构,操作系统(linux或嵌入式实时操作系统),常见硬件接口协议/总线,文件存储系统等几方面 文章目录 1)C/C++static作用,变量加入static以后在内存中存储位置的变化。static的作用变量加入static后在内存中存储位置的变化面试官…...
《DevOps实践指南》笔记-Part 2
一篇文章显得略长,本文对应第3-4章。前言、第1-2章请参考Part 1;第5-6章、附录、认证考试、参考资源等内容,请参考Part 3。 流动的技术实践 持续交付:降低在生产环境中部署和发布变更的风险。包括:打好自动化部署流水…...
树莓派智能语音助手实现音乐播放
树莓派语音助手从诞生的第一天开始,我就想着让它能像小爱音箱一样,可以语音控制播放音乐。经过这些日子的倒腾,今天终于实现了。 接下里,和大家分享下我的实现方法:首先音乐播放模块用的是我在上一篇博文写的《用sound…...
【sgCreateCallAPIFunctionParam】自定义小工具:敏捷开发→调用接口方法参数生成工具
<template><div :class"$options.name" class"sgDevTool"><sgHead /><div class"sg-container"><div class"sg-start"><div style"margin-bottom: 10px">参数列表[逗号模式]<el-too…...
完整版:NacosDocker 安装
第一步:先直接通过命令安装 Nacos docker run --name nacos2.2.3 -d -p 8848:8848 -e MODEstandalone f151dab7a111 第二步:创建 Docker 挂载目录 # 创建 log 目录 mkdir -p /root/nacos 第三步:将 Docker 容器的文件复制到挂载目录中 …...
mysql RR是否会导致幻读?
除了rr级别的当前读,都会幻读 mysql不同隔离级别: 而对于RC级别的语句级快照和RR级别的事务级快照的之间的区别,其实是由read_view生成的时机来实现的。 RC级别在执行语句时,会先关闭原来的read_view,重新生成新的r…...
一篇进阶Python深入理解函数之高阶函数与函数式编程
当我们深入探讨了函数的作用域与闭包,了解到函数不仅是代码的执行单元,还能通过闭包完成数据的封装与保护.接下来,我们将进一步挖掘函数的强大特性,尤其是高阶函数与函数式编程,帮助你更全面地理解 Python 中函数的特性与应用. 高阶函数 高阶函数是指接受一个或多个函数作为参…...
python中Web开发框架的使用
Python 的 Web 开发框架种类繁多,常见的有 Django 和 Flask 这两个框架。它们各有优点,适合不同类型的 Web 应用开发需求。下面,我将详细介绍这两大主流框架的使用方法,让你快速上手 Python 的 Web 开发。 1. Django Django 是一…...
【AI视频】Runway:Gen-2 运镜详解
博客主页: [小ᶻZ࿆] 本文专栏: AI视频 | Runway 文章目录 💯前言💯Camera Control(运镜)💯Camera Control功能测试Horizonta(左右平移)Vertical(上下平移࿰…...
Python “函数” ——Python面试100道实战题目练习,巩固知识、检查技术、成功就业
本文主要是作为Python中函数的一些题目,方便学习完Python的函数之后进行一些知识检验,感兴趣的小伙伴可以试一试,含选择题、判断题、实战题、填空题,答案在第五章。 在做题之前可以先学习或者温习一下Python的函数,推荐…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
