yolov5/8/9模型在COCO分割数据集上的应用【代码+数据集+python环境+GUI系统】
yolov5/8/9模型在COCO分割数据集上的应用【代码+数据集+python环境+GUI系统】
yolov5/8/9模型在COCO分割数据集上的应用【代码+数据集+python环境+GUI系统】
1.COCO数据集介绍
COCO数据集,全称为Microsoft Common Objects in Context,是微软于2014年出资标注的大型数据集,在计算机视觉领域备受关注和认可,被视为该领域最受关注和最权威的比赛之一。COCO数据集旨在推动计算机视觉领域的研究,特别是在图像识别、目标检测、分割和图像描述等方面。COCO数据集包含超过330K张图像,其中220K张图像是有标注的。这些图像涵盖了80个目标类别(如行人、汽车、大象等)和91种材料类别(如草、墙、天空等)。每张图像包含五句图像的语句描述,且有250,000个带关键点标注的行人。这使得COCO数据集不仅适用于目标检测和分割任务,还适用于图像描述生成等任务。
本文选取其中6400张图片作为训练测试数据集进行演示验证。
2.YOLO算法的特点
YOLOv8算法是YOLO(You Only Look Once)系列目标检测算法的最新版本,由Ultralytics团队开发。它继承了YOLO系列的优点,并在多个方面进行了创新和优化,以下是YOLOv8算法的主要特点:
(1)实时性和准确性
实时性:YOLOv8能够在保持较高准确率的同时,实现实时的目标检测,适用于需要快速响应的场景。它能够在较低的硬件配置上也能达到很高的帧率(FPS)。
准确性:通过更深更复杂的网络结构和改进的训练技巧,YOLOv8在保持高速度的同时,也大幅提高了检测的准确度。
(2)端到端的检测
YOLOv8采用端到端的训练和推理方式,可以直接从原始图像中预测目标的位置和类别,无需额外的候选框生成和筛选过程。
(3)多尺度特征融合
YOLOv8通过引入不同尺度的特征图,并进行特征融合,可以更好地处理不同大小的目标物体。它能够在多个尺度上进行预测,通常包括P3、P4、P5和新增的P2层,以增强对小目标的检测能力。
(4)鲁棒性
YOLOv8在处理遮挡、尺度变化和复杂背景等问题上具有较强的鲁棒性。这得益于其先进的特征提取网络和优化的检测策略。
(5)新技术和结构
Dense Prediction Module (DPM):DPM允许YOLOv8在高维特征图上直接进行密集预测,保留更多细节信息,有助于提高检测精度。
Soft-Gated Skip Connection (SGSC):SGSC技术利用门控机制动态调整不同特征图间的权重,使得模型能够更好地捕捉不同尺度的目标特征。
Anchor-Free检测方式:相比传统基于锚点的方法,YOLOv8采用了Anchor-Free的检测方式,减少了先验形状的限制,提高了检测精度和速度。
解耦头结构:Head部分相比YOLOv5发生了较大变化,从原先的耦合头变成了解耦头,并且从Anchor-Based转变为Anchor-Free。
TaskAlignedAssigner正样本分配策略:在Loss计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss。
(6)灵活性和可扩展性
YOLOv8支持多种数据增强技术,如Mosaic、Flip、Rotate、Crop等,可以在训练模型时增加数据的多样性,从而提高模型的泛化能力和鲁棒性。
它不仅用于目标检测,还可以扩展到图像分类、实例分割、姿态估计等计算机视觉任务。
(7) 易于使用和部署
YOLOv8可以通过pip安装,用户可以在几分钟内启动和运行YOLOv8。此外,Ultralytics提供了两种许可选项,以适应不同的使用情况:AGPL-3.0许可证适合学生和爱好者使用,而商业用户则可以选择其他许可选项。
综上所述,YOLOv8算法在实时性、准确性、多尺度检测、鲁棒性、新技术应用以及灵活性和可扩展性等方面都表现出色,是当前目标检测领域的一种先进算法。
3.YOLO算法原理
YOLO(You Only Look Once)算法虽然在命名上主要与目标检测相关,但其发展迭代版本如YOLOv8等已经开始涉及到图像分割等更复杂的任务。以下是YOLO及其分割算法(如YOLOv8中的实例分割)的一些主要特点:
端到端的目标检测系统
YOLO是一种端到端的深度学习模型,它直接对原始图像进行处理,并输出目标的类别、位置和边界框。这种设计使得YOLO非常适合实时应用,因为它避免了传统目标检测算法中复杂的预处理和后处理步骤。
基于回归的检测方法
与传统的基于分类器的检测方法不同,YOLO将目标检测视为一个回归问题。它使用一个卷积神经网络(CNN)来预测图像中每个网格单元内的目标边界框和类别概率。这种方法简化了检测流程,提高了检测速度。
高效性
YOLO算法具有非常高的计算效率,能够在保证检测精度的同时实现实时检测。这得益于其简化的检测流程和优化的网络结构。在最新的YOLO版本中,如YOLOv8,通过引入新的骨干网络、检测头和损失函数等创新,进一步提高了检测速度和精度。
适用于复杂场景
YOLO算法在复杂场景下的检测效果也非常出色。它能够处理多种尺度、遮挡和变形等复杂情况,并保持较高的检测精度。这得益于其基于全局图像信息的预测机制,以及在大规模数据集上的训练和优化。
可扩展性和灵活性
YOLO算法具有很好的可扩展性和灵活性。随着计算机视觉技术的发展和应用需求的不断增加,YOLO算法也在不断迭代和升级。新的版本如YOLOv8在保持原有优点的基础上,引入了更多的创新和改进,以更好地适应不同领域和任务的需求。
实例分割能力
对于YOLOv8等支持实例分割的版本来说,它们不仅具有目标检测的能力,还能够对图像中的每个目标进行像素级别的分割。这通过引入额外的分割分支或模块来实现,使得YOLO算法在更复杂的计算机视觉任务中表现出色。
改进的锚框策略
YOLOv8版本在锚框策略上进行了改进,如引入Anchor-Free检测头,不再依赖传统的锚框来预测边界框。这种改进使得模型更加灵活,能够更好地适应不同形状和大小的目标。
YOLO分割算法(如YOLOv8中的实例分割)具有高效性、实时性、准确性、可扩展性和灵活性等特点,这些特点使得YOLO算法在计算机视觉领域得到了广泛的应用。
5.数据集在YOLO算法中的设置
数据集主要类别为:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
示例图片如下:
将数据集划分为训练集、测试集以及验证:
设置数据集在yolov8中的配置文件为:
6.代码示例与操作步骤
设置训练、测试、推理的参数,进行编写代码:
训练代码:
分别运行对应的代码可以进行训练、测试、单张图片推理。
设计对应的GUI界面如下:
7.安装使用说明
确保代码所在的路径不能出现中文!!!!!!!
确保代码所在的路径不能出现中文!!!!!!!
确保代码所在的路径不能出现中文!!!!!!!
为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。
运行该脚本可以直接执行GUI代码,进入上述界面。不需要再次配置python的环境。
8.联系方式
我们非常乐意根据您的特定需求提供高质量的定制化开发服务。为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信。
相关文章:

yolov5/8/9模型在COCO分割数据集上的应用【代码+数据集+python环境+GUI系统】
yolov5/8/9模型在COCO分割数据集上的应用【代码数据集python环境GUI系统】 yolov5/8/9模型在COCO分割数据集上的应用【代码数据集python环境GUI系统】 1.COCO数据集介绍 COCO数据集,全称为Microsoft Common Objects in Context,是微软于2014年出资标注的…...

技术周总结 09.16~09.22 周日(架构 C# 数据库)
文章目录 一、09.16 周一1.1)问题01: 软件质量属性中"质量属性场景"、"质量属性环境分析"、"质量属性效用树"、"质量属性需求用例分析"分别是什么?1.2)问题02: 软件质量属性中…...

【java实现json转化为CSV文件】
文章目录 JSON文件中的数据格式测试文件转换的接口 JSON文件中的数据格式 单条数据展开后如下: {"text": "《邪少兵王》是冰火未央写的网络小说连载于旗峰天下","spo_list":[{"predicate": "作者", "objec…...

MySQL索引知识个人笔记总结(持续整理)
本篇笔记是个人整理的索引知识总结,刚开始有点乱,后续会一直边学边整理边总结 索引(index)是帮助MySQL高效获取数据的数据结构(有序)。就好比索引就是数据的目录 索引结构 Btree索引,Hash索引,Full-text索引,R-tree(空…...

ReKep——李飞飞团队提出的让机器人具备空间智能:基于视觉语言模型GPT-4o和关系关键点约束
前言 由于工厂、车厂的任务需求场景非常明确,加之自今年年初以来,我司在机器人这个方向的持续大力度投入(包括南京、长沙两地机器人开发团队的先后组建),使得近期我司七月接到了不少来自车厂/工厂的订单,比如其中的三个例子&…...

[Java并发编程] synchronized(含与ReentrantLock的区别)
文章目录 1. synchronized与ReentrantLock的区别2. synchronized的作用3. synchronized的使用3.1 修饰实例方法,作用于当前实例,进入同步代码前需要先获取实例的锁3.2 修饰静态方法,作用于类的Class对象,进入修饰的静态方法前需要…...

spring-boot-maven-plugin插件打包和java -jar命令执行原理
文章目录 1. Maven生命周期2. jar包结构2.1 不可执jar包结构2.2 可执行jar包结构 3. spring-boot-maven-plugin插件打包4. 执行jar原理 1. Maven生命周期 Maven的生命周期有三种: clean:清除项目构建数据,较为简单,不深入探讨&a…...

Python办公自动化教程(001):PDF内容提取
1、Pdfplumber介绍 pdfplumber的github地址: https://github.com/jsvine/pdfplumber/【介绍】:pdfplumber 是一个用于处理 PDF 文件的 Python 第三方库,它提供了一种方便的方式来提取 PDF 文件中的文本、表格和其他信息。【功能】ÿ…...

HarmonyOS鸿蒙开发实战(5.0)自定义全局弹窗实践
鸿蒙HarmonyOS开发实战往期文章必看: HarmonyOS NEXT应用开发性能实践总结 最新版!“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线!(从零基础入门到精通) 非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线&am…...
【AI学习】了解OpenAI o1背后的self-play RL:开启新的智能道路
在ChatGPT刚刚出来的时候,沐神关于ChatGPT有一段视频,只有几分钟,却是讲得极其透彻的一段。大概意思就是,过去的AI智能水平,比如五年前,大概相当于人类5秒钟思考的程度,包括自动驾驶,…...

Java项目实战II基于Java+Spring Boot+MySQL的车辆管理系统(开发文档+源码+数据库)
目录 一、前言 二、技术介绍 三、系统实现 四、论文参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 "随着…...

IPsec-VPN中文解释
网络括谱图 IPSec-VPN 配置思路 1 配置IP地址 FWA:IP地址的配置 [FW1000-A]interface GigabitEthernet 1/0/0 [FW1000-A-GigabitEthernet1/0/0]ip address 10.1.1.1 24 //配置IP地址 [FW1000-A]interface GigabitEthernet 1/0/2 [FW1000-A-GigabitEthernet1/0/2]ip a…...

Ubuntu 22.04 源码下载、编译
Kernel/BuildYourOwnKernel - Ubuntu Wikihttps://wiki.ubuntu.com/Kernel/BuildYourOwnKernel 一、查询当前系统内核版本 rootubuntu22:~# uname -r 5.15.0-118-generic 二、查询本地软件包数据库中的内核源码信息 rootubuntu22:~# apt search linux-source Sorting... Do…...

【深度学习实战—11】:基于Pytorch实现谷歌QuickDraw数据集的下载、解析、格式转换、DDP分布式训练、测试
✨博客主页:王乐予🎈 ✨年轻人要:Living for the moment(活在当下)!💪 🏆推荐专栏:【图像处理】【千锤百炼Python】【深度学习】【排序算法】 目录 😺〇、仓库…...

基于SpringBoot+WebSocket实现地图上绘制车辆实时运动轨迹图
实现基于北斗卫星的车辆定位和轨迹图的Maven工程(使用模拟数据),我们将使用以下技术: Spring Boot:作为后端框架,用来提供数据接口。Thymeleaf:作为前端模板引擎,呈现网页。Leaflet…...

嵌入式入门小工程
此代码基于s3c2440 1.点灯 //led.c void init_led(void) {unsigned int t;t GPBCON;t & ~((3 << 10) | (3 << 12) | (3 << 14) | (3 << 16));t | (1 << 10) | (1 << 12) | (1 << 14) | (1 << 16);GPBCON t; }void le…...

hackmyvm靶场--zon
环境 攻击机kali 靶机 未知 主机探测 因为在同一个局域网内使用ARP协议探测存活主机 靶机为192.168.56.128 端口探测 常见的80和22端口 那么一定是寻找web漏洞拿shell了 后台扫描 后台扫描常用dirsearch和gobuster,有时候小字典可能不太行,可以尝试换个大点…...
atcoder abc372 启发式合并, dp
A delete 代码: #include <bits.stdc.h>using namespace std;int main() {string s;cin >> s;for(auto t: s) if(t ! .) cout << t; } B 3 ^ A 思路:三进制转换,可以参考二进制,先把当前可以加入的最大的3的…...

CentOS Stream 9部署MariaDB
1、更新系统软件包 sudo dnf update 2、安装MariaDB软件包(替代mysql) sudo dnf install mariadb-server 3、安装MariaDB服务 sudo systemctl enable --now mariadb 4、检查MariaDB服务状态 sudo systemctl status mariadb 5、配置MariaDB安全性 sudo my…...

【Leetcode:997. 找到小镇的法官 + 入度出度】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...