当前位置: 首页 > news >正文

基于open-gpu-kernel-modules的p2p vram映射bar1提高通信效率

背景

bar1 Base Address Register 1 用于内存映射的寄存器,定义了设备的内存映射区域,BAR1专门分配给gpu的一部分内存区域,允许cpu通过pcie总线直接访问显存VRAM中的数据。但bar1的大小是有限的,在常规的4090上,bar1只有256M,基于nvidia开源的open-gpu-kernel-modules模块通过将bar1的寄存器地址增大至32G来提高计算效率

系统版本

root@exai-165:~# cat /etc/os-release 
PRETTY_NAME="Ubuntu 22.04.4 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.4 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy
root@exai-165:~# uname -a 
Linux exai-165 6.5.0-44-generic #44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16 UTC 2 x86_64 x86_64 x86_64 GNU/Linux

实施

  1. 编译开源的nvidia驱动模块
  2. 编译p2p模块

破解前bar1大小

root@exai-165:/opt# lspci -s 0000:81:00.0 -v
81:00.0 VGA compatible controller: NVIDIA Corporation Device 2684 (rev a1) (prog-if 00 [VGA controller])Subsystem: NVIDIA Corporation Device 167cFlags: bus master, fast devsel, latency 0, IRQ 164, IOMMU group 27Memory at b8000000 (32-bit, non-prefetchable) [size=16M]Memory at 20030000000 (64-bit, prefetchable) [size=256M]  # 这里Memory at 20040000000 (64-bit, prefetchable) [size=32M]I/O ports at 6000 [size=128]Expansion ROM at b9000000 [virtual] [disabled] [size=512K]Capabilities: [60] Power Management version 3Capabilities: [68] MSI: Enable- Count=1/1 Maskable- 64bit+Capabilities: [78] Express Legacy Endpoint, MSI 00Capabilities: [b4] Vendor Specific Information: Len=14 <?>Capabilities: [100] Virtual ChannelCapabilities: [250] Latency Tolerance ReportingCapabilities: [258] L1 PM SubstatesCapabilities: [128] Power Budgeting <?>Capabilities: [420] Advanced Error ReportingCapabilities: [600] Vendor Specific Information: ID=0001 Rev=1 Len=024 <?>Capabilities: [900] Secondary PCI ExpressCapabilities: [bb0] Physical Resizable BARCapabilities: [c1c] Physical Layer 16.0 GT/s <?>Capabilities: [d00] Lane Margining at the Receiver <?>Capabilities: [e00] Data Link Feature <?>Kernel driver in use: nvidiaKernel modules: nvidiafb, nouveau, nvidia_drm, nvidia

nvidia驱动模块

卸载机器上原本的驱动

./NVIDIA-Linux-x86_64-535.183.01.run --uninstall

克隆开源的驱动
自行配置git使用代理

git clone --branch 550.54.15 --single-branch https://github.com/NVIDIA/open-gpu-kernel-modules.git
git branch
git checkout -b 550.54.15

因为机器上的CC和编译内核使用的gcc不是同一个版本,所以这里手工指定make使用哪个gcc

make CC=x86_64-linux-gnu-gcc-12 modules -j$(nproc)
make modules_install CC=x86_64-linux-gnu-gcc-12 modules -j$(nproc)

备注:通过机器上的多版本管理工具来实现cc版本管理不生效
验证

root@exai-165:~# cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX Open Kernel Module for x86_64  550.54.15  Release Build  (root@exai-165)  2024年 09月 06日 星期五 10:49:38 CST
GCC version:  gcc version 12.3.0 (Ubuntu 12.3.0-1ubuntu1~22.04)

p2p

https://github.com/tinygrad/open-gpu-kernel-modules
克隆,编译,按照readme里面的来没啥问题

root@exai-165:/opt/nvidia-p2p/open-gpu-kernel-modules# ./install.sh 
make -C src/nvidia
make -C src/nvidia-modeset
make[1]: Entering directory '/opt/nvidia-p2p/open-gpu-kernel-modules/src/nvidia'
make[1]: Entering directory '/opt/nvidia-p2p/open-gpu-kernel-modules/src/nvidia-modeset'
make[1]: Nothing to be done for 'default'.
make[1]: Leaving directory '/opt/nvidia-p2p/open-gpu-kernel-modules/src/nvidia-modeset'
cd kernel-open/nvidia-modeset/ && ln -sf ../../src/nvidia-modeset/_out/Linux_x86_64/nv-modeset-kernel.o nv-modeset-kernel.o_binary
make[1]: Nothing to be done for 'default'.
make[1]: Leaving directory '/opt/nvidia-p2p/open-gpu-kernel-modules/src/nvidia'
cd kernel-open/nvidia/ && ln -sf ../../src/nvidia/_out/Linux_x86_64/nv-kernel.o nv-kernel.o_binary
make -C kernel-open modules
make[1]: Entering directory '/opt/nvidia-p2p/open-gpu-kernel-modules/kernel-open'
make[2]: Entering directory '/usr/src/linux-headers-6.5.0-44-generic'
warning: the compiler differs from the one used to build the kernelThe kernel was built by: x86_64-linux-gnu-gcc-12 (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0You are using:           cc (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0
make[2]: Leaving directory '/usr/src/linux-headers-6.5.0-44-generic'
make[1]: Leaving directory '/opt/nvidia-p2p/open-gpu-kernel-modules/kernel-open'
make -C kernel-open modules_install
make[1]: Entering directory '/opt/nvidia-p2p/open-gpu-kernel-modules/kernel-open'
make[2]: Entering directory '/usr/src/linux-headers-6.5.0-44-generic'INSTALL /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia.koINSTALL /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-uvm.koINSTALL /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-modeset.koINSTALL /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-drm.koINSTALL /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-peermem.koSIGN    /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-peermem.koSIGN    /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-modeset.koSIGN    /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-drm.koSIGN    /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia.koSIGN    /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia-uvm.koDEPMOD  /lib/modules/6.5.0-44-generic
Warning: modules_install: missing 'System.map' file. Skipping depmod.
make[2]: Leaving directory '/usr/src/linux-headers-6.5.0-44-generic'
make[1]: Leaving directory '/opt/nvidia-p2p/open-gpu-kernel-modules/kernel-open'
Fri Sep  6 15:24:49 2024       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.15              Driver Version: 550.54.15      CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:01:00.0 Off |                  Off |
| 30%   36C    P0             53W /  450W |       0MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:81:00.0 Off |                  Off |
| 31%   44C    P0             69W /  450W |       0MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off |   00000000:C1:00.0 Off |                  Off |
| 31%   39C    P0             55W /  450W |       0MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off |   00000000:C2:00.0 Off |                  Off |
| 31%   42C    P0             64W /  450W |       0MiB /  24564MiB |      3%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------++-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+

验证

root@exai-165:/opt/nvidia-p2p/open-gpu-kernel-modules# lspci -s 0000:81:00.0 -v
81:00.0 VGA compatible controller: NVIDIA Corporation Device 2684 (rev a1) (prog-if 00 [VGA controller])Subsystem: NVIDIA Corporation Device 167cFlags: bus master, fast devsel, latency 0, IRQ 164, IOMMU group 27Memory at b8000000 (32-bit, non-prefetchable) [size=16M]Memory at 18800000000 (64-bit, prefetchable) [size=32G]  # 这里Memory at 18400000000 (64-bit, prefetchable) [size=32M]I/O ports at 6000 [size=128]Expansion ROM at b9000000 [virtual] [disabled] [size=512K]Capabilities: [60] Power Management version 3Capabilities: [68] MSI: Enable- Count=1/1 Maskable- 64bit+Capabilities: [78] Express Legacy Endpoint, MSI 00Capabilities: [b4] Vendor Specific Information: Len=14 <?>Capabilities: [100] Virtual ChannelCapabilities: [250] Latency Tolerance ReportingCapabilities: [258] L1 PM SubstatesCapabilities: [128] Power Budgeting <?>Capabilities: [420] Advanced Error ReportingCapabilities: [600] Vendor Specific Information: ID=0001 Rev=1 Len=024 <?>Capabilities: [900] Secondary PCI ExpressCapabilities: [bb0] Physical Resizable BARCapabilities: [c1c] Physical Layer 16.0 GT/s <?>Capabilities: [d00] Lane Margining at the Receiver <?>Capabilities: [e00] Data Link Feature <?>Kernel driver in use: nvidiaKernel modules: nvidiafb, nouveau, nvidia_drm, nvidia

/var/log/kernel.log中有读取registry address错误的信息,syslog中有不断向内核中注册bar1的信息,判断应该是p2p的版本不兼容4090卡,具体的原因由于其他事情未继续进行,等后面看看
Sep 19 16:33:03 exai-165 kernel: [436359.365867] NVRM: gpuHandleSanityCheckRegReadError_GM107: Possible bad register read: addr: 0x110100, regvalue: 0xbadf5620, error code: Unknown SYS_PRI_ERROR_CODE

回退

即卸载通过open-gpu-kernel-modules编译安装的550.54.15版本,然后重新安装原来的535版本驱动

  1. 卸载内核模块
  2. 卸载550版本驱动
  3. 安装535版本驱动
  4. 如果nvidia-smi无法显示,手工删除550内核模块使用dkms重新编译到内核中

装完535版本驱动报错
nvidia-smi
Failed to initialize NVML: Driver/library version mismatch
NVML library version: 535.183

查看内核中注册的驱动版本

dkms status
nvidia/535.183.01, 6.5.0-44-generic, x86_64: installed

查看驱动内核信息

cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX Open Kernel Module for x86_64  550.54.15  Release Build  (root@exai-165)  2024年 09月 06日 星期五 10:49:38 CST
GCC version:  gcc version 12.3.0 (Ubuntu 12.3.0-1ubuntu1~22.04)

查看内核模块

lsmod |grep nvidia
nvidia_drm            122880  0
nvidia_modeset       1490944  1 nvidia_drm
nvidia               8675328  1 nvidia_modeset
video                  73728  1 nvidia_modeset
ecc                    45056  1 nvidia
drm_kms_helper        274432  4 ast,nvidia_drm
drm                   765952  6 drm_kms_helper,ast,drm_shmem_helper,nvidia,nvidia_drm
# 找到内核模块的路径
modinfo nvidia
filename:       /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia.ko
import_ns:      DMA_BUF
alias:          char-major-195-*
version:        550.54.15
supported:      external
license:        Dual MIT/GPL
firmware:       nvidia/550.54.15/gsp_tu10x.bin
firmware:       nvidia/550.54.15/gsp_ga10x.bin

卸载内核模块后,手动删除

mkdir /tmp/nvidia-module
mv /lib/modules/6.5.0-44-generic/kernel/drivers/video/nvidia* /tmp/nvidia-module/

此时nvidia-smi显示
nvidia-smi
NVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running

先卸载再安装

dkms remove -m nvidia -v 535.183.01 --all
dkms install -m nvidia -v 535.183.01

ok

nvidia-smi 
Fri Sep 20 10:14:32 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.01             Driver Version: 535.183.01   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 4090        Off | 00000000:81:00.0 Off |                  Off |
| 30%   34C    P0              64W / 450W |      0MiB / 24564MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off | 00000000:C1:00.0 Off |                  Off |
| 31%   32C    P0              50W / 450W |      0MiB / 24564MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|  No running processes found                                                           |
+---------------------------------------------------------------------------------------+

reference:
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/tinygrad/open-gpu-kernel-modules

相关文章:

基于open-gpu-kernel-modules的p2p vram映射bar1提高通信效率

背景 bar1 Base Address Register 1 用于内存映射的寄存器&#xff0c;定义了设备的内存映射区域&#xff0c;BAR1专门分配给gpu的一部分内存区域&#xff0c;允许cpu通过pcie总线直接访问显存VRAM中的数据。但bar1的大小是有限的&#xff0c;在常规的4090上&#xff0c;bar1只…...

java之斗地主部分功能的实现

今天我们要实现斗地主中发牌和洗牌这两个功能&#xff0c;该如何去实现呢&#xff1f; 1.创建牌类&#xff1a;52张牌每一张牌包含两个属性:牌的大小和牌的花色。 故我们优先创建一个牌的类(Card)&#xff1a;包含大小和花色。 public class Card { //单张牌的大小及类型/…...

我的AI工具箱Tauri版-VideoIntroductionClipCut视频介绍混剪

本教程基于自研的AI工具箱Tauri版进行VideoIntroductionClipCut视频介绍混剪。 本项目为自研的AI工具箱Tauri版中的视频剪辑模块&#xff0c;专注于自动生成视频介绍片段。该模块名为 VideoIntroductionClipCut&#xff0c;用户可以通过该工具快速进行视频的混剪和介绍内容的生…...

【鸿蒙OH-v5.0源码分析之 Linux Kernel 部分】011 - 第一个用户空间进程 init 进程 第一阶段初始化过程 源码分析

【鸿蒙OH-v5.0源码分析之 Linux Kernel 部分】011 - 第一个用户空间进程 init 进程 第一阶段初始化过程 源码分析 系列文章汇总:《鸿蒙OH-v5.0源码分析之 Uboot+Kernel 部分】000 - 文章链接汇总》 本文链接:《【鸿蒙OH-v5.0源码分析之 Linux Kernel 部分】011 - 第一个用户空…...

MyBatis 源码解析:Mapper 文件加载与解析

引言 在 MyBatis 中&#xff0c;Mapper 文件扮演了至关重要的角色&#xff0c;它通过 SQL 映射文件来定义数据库查询操作和 Java 对象之间的映射关系。Mapper 文件通常是以 XML 格式存储的&#xff0c;包含了 SQL 语句以及与 Java 对象的对应关系。在本篇文章中&#xff0c;我…...

(11)(2.1.2) DShot ESCs(二)

文章目录 前言 3 配置伺服功能 4 检查RC横幅 5 参数说明 前言 DShot 是一种数字 ESC 协议&#xff0c;它允许快速、高分辨率的数字通信&#xff0c;可以改善飞行器控制&#xff0c;这在多旋翼和 quadplane 应用中特别有用。 3 配置伺服功能 如上所述&#xff0c;如果使用…...

yolov5/8/9模型在COCO分割数据集上的应用【代码+数据集+python环境+GUI系统】

yolov5/8/9模型在COCO分割数据集上的应用【代码数据集python环境GUI系统】 yolov5/8/9模型在COCO分割数据集上的应用【代码数据集python环境GUI系统】 1.COCO数据集介绍 COCO数据集&#xff0c;全称为Microsoft Common Objects in Context&#xff0c;是微软于2014年出资标注的…...

技术周总结 09.16~09.22 周日(架构 C# 数据库)

文章目录 一、09.16 周一1.1&#xff09;问题01&#xff1a; 软件质量属性中"质量属性场景"、"质量属性环境分析"、"质量属性效用树"、"质量属性需求用例分析"分别是什么&#xff1f;1.2&#xff09;问题02&#xff1a; 软件质量属性中…...

【java实现json转化为CSV文件】

文章目录 JSON文件中的数据格式测试文件转换的接口 JSON文件中的数据格式 单条数据展开后如下&#xff1a; {"text": "《邪少兵王》是冰火未央写的网络小说连载于旗峰天下","spo_list":[{"predicate": "作者", "objec…...

MySQL索引知识个人笔记总结(持续整理)

本篇笔记是个人整理的索引知识总结&#xff0c;刚开始有点乱&#xff0c;后续会一直边学边整理边总结 索引&#xff08;index&#xff09;是帮助MySQL高效获取数据的数据结构(有序)。就好比索引就是数据的目录 索引结构 Btree索引,Hash索引,Full-text索引&#xff0c;R-tree(空…...

ReKep——李飞飞团队提出的让机器人具备空间智能:基于视觉语言模型GPT-4o和关系关键点约束

前言 由于工厂、车厂的任务需求场景非常明确&#xff0c;加之自今年年初以来&#xff0c;我司在机器人这个方向的持续大力度投入(包括南京、长沙两地机器人开发团队的先后组建)&#xff0c;使得近期我司七月接到了不少来自车厂/工厂的订单&#xff0c;比如其中的三个例子&…...

[Java并发编程] synchronized(含与ReentrantLock的区别)

文章目录 1. synchronized与ReentrantLock的区别2. synchronized的作用3. synchronized的使用3.1 修饰实例方法&#xff0c;作用于当前实例&#xff0c;进入同步代码前需要先获取实例的锁3.2 修饰静态方法&#xff0c;作用于类的Class对象&#xff0c;进入修饰的静态方法前需要…...

spring-boot-maven-plugin插件打包和java -jar命令执行原理

文章目录 1. Maven生命周期2. jar包结构2.1 不可执jar包结构2.2 可执行jar包结构 3. spring-boot-maven-plugin插件打包4. 执行jar原理 1. Maven生命周期 Maven的生命周期有三种&#xff1a; clean&#xff1a;清除项目构建数据&#xff0c;较为简单&#xff0c;不深入探讨&a…...

Python办公自动化教程(001):PDF内容提取

1、Pdfplumber介绍 pdfplumber的github地址&#xff1a; https://github.com/jsvine/pdfplumber/【介绍】&#xff1a;pdfplumber 是一个用于处理 PDF 文件的 Python 第三方库&#xff0c;它提供了一种方便的方式来提取 PDF 文件中的文本、表格和其他信息。【功能】&#xff…...

HarmonyOS鸿蒙开发实战(5.0)自定义全局弹窗实践

鸿蒙HarmonyOS开发实战往期文章必看&#xff1a; HarmonyOS NEXT应用开发性能实践总结 最新版&#xff01;“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线&#xff01;&#xff08;从零基础入门到精通&#xff09; 非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线&am…...

【AI学习】了解OpenAI o1背后的self-play RL:开启新的智能道路

在ChatGPT刚刚出来的时候&#xff0c;沐神关于ChatGPT有一段视频&#xff0c;只有几分钟&#xff0c;却是讲得极其透彻的一段。大概意思就是&#xff0c;过去的AI智能水平&#xff0c;比如五年前&#xff0c;大概相当于人类5秒钟思考的程度&#xff0c;包括自动驾驶&#xff0c…...

Java项目实战II基于Java+Spring Boot+MySQL的车辆管理系统(开发文档+源码+数据库)

目录 一、前言 二、技术介绍 三、系统实现 四、论文参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 "随着…...

IPsec-VPN中文解释

网络括谱图 IPSec-VPN 配置思路 1 配置IP地址 FWA:IP地址的配置 [FW1000-A]interface GigabitEthernet 1/0/0 [FW1000-A-GigabitEthernet1/0/0]ip address 10.1.1.1 24 //配置IP地址 [FW1000-A]interface GigabitEthernet 1/0/2 [FW1000-A-GigabitEthernet1/0/2]ip a…...

Ubuntu 22.04 源码下载、编译

Kernel/BuildYourOwnKernel - Ubuntu Wikihttps://wiki.ubuntu.com/Kernel/BuildYourOwnKernel 一、查询当前系统内核版本 rootubuntu22:~# uname -r 5.15.0-118-generic 二、查询本地软件包数据库中的内核源码信息 rootubuntu22:~# apt search linux-source Sorting... Do…...

【深度学习实战—11】:基于Pytorch实现谷歌QuickDraw数据集的下载、解析、格式转换、DDP分布式训练、测试

✨博客主页&#xff1a;王乐予&#x1f388; ✨年轻人要&#xff1a;Living for the moment&#xff08;活在当下&#xff09;&#xff01;&#x1f4aa; &#x1f3c6;推荐专栏&#xff1a;【图像处理】【千锤百炼Python】【深度学习】【排序算法】 目录 &#x1f63a;〇、仓库…...

基于SpringBoot+WebSocket实现地图上绘制车辆实时运动轨迹图

实现基于北斗卫星的车辆定位和轨迹图的Maven工程&#xff08;使用模拟数据&#xff09;&#xff0c;我们将使用以下技术&#xff1a; Spring Boot&#xff1a;作为后端框架&#xff0c;用来提供数据接口。Thymeleaf&#xff1a;作为前端模板引擎&#xff0c;呈现网页。Leaflet…...

嵌入式入门小工程

此代码基于s3c2440 1.点灯 //led.c void init_led(void) {unsigned int t;t GPBCON;t & ~((3 << 10) | (3 << 12) | (3 << 14) | (3 << 16));t | (1 << 10) | (1 << 12) | (1 << 14) | (1 << 16);GPBCON t; }void le…...

hackmyvm靶场--zon

环境 攻击机kali 靶机 未知 主机探测 因为在同一个局域网内使用ARP协议探测存活主机 靶机为192.168.56.128 端口探测 常见的80和22端口 那么一定是寻找web漏洞拿shell了 后台扫描 后台扫描常用dirsearch和gobuster,有时候小字典可能不太行&#xff0c;可以尝试换个大点…...

atcoder abc372 启发式合并, dp

A delete 代码&#xff1a; #include <bits.stdc.h>using namespace std;int main() {string s;cin >> s;for(auto t: s) if(t ! .) cout << t; } B 3 ^ A 思路&#xff1a;三进制转换&#xff0c;可以参考二进制&#xff0c;先把当前可以加入的最大的3的…...

CentOS Stream 9部署MariaDB

1、更新系统软件包 sudo dnf update 2、安装MariaDB软件包&#xff08;替代mysql&#xff09; sudo dnf install mariadb-server 3、安装MariaDB服务 sudo systemctl enable --now mariadb 4、检查MariaDB服务状态 sudo systemctl status mariadb 5、配置MariaDB安全性 sudo my…...

【Leetcode:997. 找到小镇的法官 + 入度出度】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

大数据Flink(一百二十三):五分钟上手Flink MySQL连接器

文章目录 五分钟上手Flink MySQL连接器 一、创建数据库表 二、​​​​​​创建session集群 三、源表查询 四、​​​​​窗口计算 五、​​​​​​结果数据写回数据库 五分钟上手Flink MySQL连接器 MySQL Connector可以将本地或远程的MySQL数据库连接到Flink中&#x…...

SYN Flood攻击原理,SYN Cookie算法

SYN Flood是一种非常危险而常见的Dos攻击方式。到目前为止&#xff0c;能够有效防范SYN Flood攻击的手段并不多&#xff0c;SYN Cookie就是其中最著名的一种。 1. SYN Flood攻击原理 SYN Flood攻击是一种典型的拒绝服务(Denial of Service)攻击。所谓的拒绝服务攻击就是通过进…...

计组(蒋)期末速成笔记1

蒋本珊计组期末不挂科复习笔记 第1章 概论 第2章 数据的机器层次表示 第3章 指令系统 第4章 数值的机器运算 第5章 存储系统和结构 第6章 中央处理器 第7章 总线 第1章 概论 蒋本珊计组期末不挂科复习笔记知道你快考试了&#xff0c;莫慌&#xff01; 第1章 概论1.1 冯诺依曼计…...

mysql学习教程,从入门到精通,SQL 更新数据(UPDATE 语句)(17)

1、SQL 更新数据&#xff08;UPDATE 语句&#xff09; SQL UPDATE 需要指定要更新的表、要修改的列以及新值&#xff0c;并且通常会通过WHERE子句来指定哪些行需要被更新。下面是一个简单的示例&#xff0c;说明如何使用UPDATE语句。 假设我们有一个名为employees的表&#xf…...