机器学习——Bagging
Bagging:
方法:集成n个base learner模型,每个模型都对原始数据集进行有放回的随机采样获得随机数据集,然后并行训练。
回归问题:n个base模型进行预测,将得到的预测值取平均得到最终结果。
分类问题:n个base模型进行预测,投票选择出n个分类结果中出现次数最对的结果作为最终分类结果
代表模型:随机森林是Bagging的一个代表。它基于自助采样法从原始数据集中抽取多个样本子集,
并在每个子集上训练一个决策树,最后通过投票或平均的方式得到最终的预测结果。
随机森林在鸢尾花数据集的分类实现,代码可直接运行,数据集在文章顶部免费下载
# 导入所需的库
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.preprocessing import StandardScaler
import seaborn as sns# 加载鸢尾花数据集
data = pd.read_excel('../data/鸢尾花分类数据集/Iris花分类.xlsx')
X = data.iloc[:, :4].values # 选取前4列作为特征
y = data.iloc[:, 4:].values.ravel() # 选取最后1列作为标签# 特征缩放(标准化)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 将数据集划分为训练集和测试集
# 通常我们使用80%的数据作为训练集,20%的数据作为测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=66)# 创建随机森林分类器实例
# n_estimators表示森林中树的数量,可以调整以获得更好的性能
randomForest = RandomForestClassifier(n_estimators=100, random_state=42)# 使用训练数据来拟合(训练)随机森林模型
randomForest.fit(X_train, y_train)# 使用训练好的模型对测试集进行预测
y_pred = randomForest.predict(X_test)# 计算预测结果的准确度
accuracy = accuracy_score(y_test, y_pred)# 打印出准确度
print("随机森林分类精度为: {:.4f}%".format(accuracy * 100))# 获取特征重要性
feature_importances = randomForest.feature_importances_
# 获取特征名称
feature_names = data.columns[:4].tolist()
# 打印特征重要性
print("特征重要性:")
for feature, importance in zip(feature_names, feature_importances):print(f"{feature}: {importance:.4f}")
# 可视化特征重要性
# 创建一个DataFrame来存储特征重要程度
importances_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})# 按重要程度降序排序
importances_df = importances_df.sort_values(by='Importance', ascending=False)# 绘制条形图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.figure(figsize=(10, 5))
plt.bar(importances_df['Feature'], importances_df['Importance'])
plt.title('Feature Importances')
plt.ylabel('Importance')
plt.xlabel('Feature')
plt.show()# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)# 绘制混淆矩阵图
plt.figure(figsize=(7, 5))
sns.heatmap(cm, annot=True, fmt=".0f", linewidths=.5, square=True, cmap='Blues')
plt.ylabel('实际标签', fontproperties='SimHei', size=14)
plt.xlabel('预测标签', fontproperties='SimHei', size=14)
plt.title('随机森林分类器混淆矩阵', fontproperties='SimHei', size=15)
plt.show()
结果为:
相关文章:

机器学习——Bagging
Bagging: 方法:集成n个base learner模型,每个模型都对原始数据集进行有放回的随机采样获得随机数据集,然后并行训练。 回归问题:n个base模型进行预测,将得到的预测值取平均得到最终结果。 分类问题…...
日志体系结构与框架:历史、实现与如何在 Spring Cloud 中使用日志体系
文章目录 1. 引言2. 日志体系结构3. 日志框架的发展历程日志框架特点对比 4. 日志记录器的使用与管理使用 SLF4J 和 Logback 的日志记录示例 5. Spring Cloud 中的日志使用5.1 日志框架集成5.2 分布式追踪:Spring Cloud Sleuth 和 Zipkin添加 Sleuth 和 Zipkin 依赖…...

图文深入理解SQL语句的执行过程
List item 本文将深入介绍SQL语句的执行过程。 一.在RDBMS(关系型DB)中,看似很简单的一条已写入DB内存的SQL语句执行过程却非常复杂,也就是说,你执行了一条诸如select count(*) where id 001 from table_name的非常简…...
ubuntu安装StarQuant
安装boost 下面展示一些 内联代码片。 sudo apt install libboost-all-dev -y安装libmongoc-1.0 链接: link // An highlighted block sudo apt install libmongoc-1.0-0 sudo apt install libbson-1.0 sudo apt install cmake libssl-dev libsasl2-dev编译源码 $ git clone…...
学习篇 | Jupyter 使用(notebook hub)
1. JupyterHub 1.1 快速尝试 jupyterhub -f/path/jupyter_config.py --no-ssl1.2 长期后台运行 bash -c "nohup jupyterhub -f/path/jupyter_config.py --no-ssl" > ~/jupyterhub.log 2>&1 &1.3 帮助 jupyterhub --help2. Jupyter Notebook 2.1 快…...
【裸机装机系列】8.kali(ubuntu)-虚拟内存swap交换分区扩展
推荐阅读: 1.kali(ubuntu)-为什么弃用ubuntu,而选择基于debian的kali操作系统 linux swap交换分区,相当于win系统虚拟内存的概念。当linux系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前…...
异步请求的方法以及原理
异步请求是指在发送请求后,不会阻塞程序的执行,而是继续执行后续的代码,等待请求返回后再执行相应的回调函数。常见的异步请求方法包括使用XMLHttpRequest对象(XHR)和fetch API。 异步请求的方法 1. XMLHttpRequest (X…...

SpringCloud入门(六)Nacos注册中心(下)
一、Nacos环境隔离 Nacos提供了namespace来实现环境隔离功能。 nacos中可以有多个namespace。namespace下可以有group、service等。不同namespace之间相互隔离,例如不同namespace的服务互相不可见。 使用Nacos Namespace 环境隔离 步骤: 1.在Nacos控制…...
【RDMA】mlxlink检查和调试连接状态及相关问题--驱动工具
简介 mlxlink工具用于检查和调试连接状态及相关问题。该工具可以用于不同的链路和电缆(包括被动、电动、收发器和背板)。 属于mft工具套件的一个工具,固件工具 Firmware Tools (MFT):https://blog.csdn.net/bandaoyu/article/details/14242…...

QT For Android开发-打开PPT文件
一、前言 需求: Qt开发Android程序过程中,点击按钮就打开一个PPT文件。 Qt在Windows上要打开PPT文件或者其他文件很容易。可以使用QDesktopServices打开文件,非常方便。QDesktopServices提供了静态接口调用系统级别的功能。 这里用的QDesk…...

SpringBoot教程(三十) | SpringBoot集成Shiro权限框架
SpringBoot教程(三十) | SpringBoot集成Shiro权限框架 一、 什么是Shiro二、Shiro 组件核心组件其他组件 三、流程说明shiro的运行流程 四、SpringBoot 集成 Shiro (shiro-spring-boot-web-starter方式)1. 添加 Shiro 相关 maven2…...
[ffmpeg] 视频格式转换
本文主要梳理 ffmpeg 中的视频格式转换。由于上屏的数据是 rgba,编码使用的是 yuv数据,所以经常会使用到视频格式的转换。 除了使用 ffmpeg进行转换,还可以通过 libyuv 和 directX 写 shader 进行转换。 之前看到文章说 libyuv 之前是 ffmpeg…...
git-repo系列教程(3) git-repo https证书认证问题
文章目录 问题描述解决步骤1.下载证书2.测试证书是否正常3.设置环境变量 总结 问题描述 在使用git repo 同步仓库时,发现不能同步,出现如下提示错误: % Total % Received % Xferd Average Speed Time Time Time CurrentDload Upload Total Spent Left …...

中序遍历二叉树全过程图解
文章目录 中序遍历图解总结拓展:回归与回溯 中序遍历图解 首先看下中序遍历的代码,其接受一个根结点root作为参数,判断根节点是否为nil,不为nil则先递归遍历左子树。 func traversal(root *TreeNode,res *[]int) {if root nil …...

设计模式 组合模式(Composite Pattern)
组合模式简绍 组合模式(Composite Pattern)是一种结构型设计模式,它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端可以用一致的方式处理单个对象和组合对象。这样,可以在不知道对象具体类型的条…...

在vue中嵌入vitepress,基于markdown文件生成静态网页从而嵌入社团周报系统的一些想法和思路
什么是vitepress vitepress是一种将markdown文件渲染成静态网页的技术 其使用仅需几行命令即可 //在根目录安装vitepress npm add -D vitepress //初始化vitepress,添加相关配置文件,选择主题,描述,框架等 npx vitepress init //…...

神经网络面试题目
1. 批规范化(Batch Normalization)的好处都有啥?、 A. 让每一层的输入的范围都大致固定 B. 它将权重的归一化平均值和标准差 C. 它是一种非常有效的反向传播(BP)方法 D. 这些均不是 正确答案是:A 解析: batch normalization 就…...

C语言题目之单身狗2
文章目录 一、题目二、思路三、代码实现 提示:以下是本篇文章正文内容,下面案例可供参考 一、题目 二、思路 第一步 在c语言题目之打印单身狗我们已经讲解了在一组数据中出现一个单身狗的情况,而本道题是出现两个单身狗的情况。根据一个数…...
Vue2学习笔记(03关于VueComponent)
1.school组件本质是一个名为Vuecomponent的构造函数,且不是程序员定义的,是Vue.extend生成的。 2.我们只需要写<school/>或<school></school>,Vue解析时会帮我们创建school组件的实例对象,即Vue帮我们执行的:new Vuecompo…...
微服务架构中常用技术框架
认证授权 Spring Security OAuth 2.0 JWT Keycloak Istio Apache Shiro 日志监控 ELK Prometheus Grafana Fluentd CI/CD Jenkins GitLab CI CircleCI ArgoCD 服务通信 gRPC REST API Apache Thrift Apache Avro Apache Dubbo OpenFegin 断路器 Hystr…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...

Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
前端调试HTTP状态码
1xx(信息类状态码) 这类状态码表示临时响应,需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分,客户端应继续发送剩余部分。 2xx(成功类状态码) 表示请求已成功被服务器接收、理解并处…...
电脑桌面太单调,用Python写一个桌面小宠物应用。
下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡,可以响应鼠标点击,并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...

轻量级Docker管理工具Docker Switchboard
简介 什么是 Docker Switchboard ? Docker Switchboard 是一个轻量级的 Web 应用程序,用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器,使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...
LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考
目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候,显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...